This HTML5 document contains 166 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n11http://dx.doi.org/10.1016/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n10http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q50549549
rdf:type
wikibase:Item
schema:description
2016年学术文章 wetenschappelijk artikel 2016年学术文章 article scientific scientific article published on 9 November 2016 научная статья artigo científico vedecký článok مقالة علمية نشرت في 9 نوفمبر 2016 wissenschaftlicher Artikel ৯ নভেম্বর ২০১৬-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ article científic 2016年學術文章 bài báo khoa học videnskabelig artikel 2016 թվականի նոյեմբերի 9-ին հրատարակված գիտական հոդված articolo scientifico artículu científicu tieteellinen artikkeli 2016年学术文章 teaduslik artikkel научни чланак artikulong pang-agham naučni članak 2016年の論文 научна статия наукова стаття, опублікована в листопаді 2016 2016 nî lūn-bûn artigo científico scientific article published on 9 November 2016 2016年學術文章 2016年學術文章 2016년 논문 სამეცნიერო სტატია мақолаи илмӣ vědecký článek 2016年学术文章 vitenskapelig artikkel vetenskaplig artikel 2016年学术文章 2016年学术文章 article scientifique artikel ilmiah научни чланак scienca artikolo מאמר מדעי artikull shkencor articol științific vitskapeleg artikkel scientific article published on 9 November 2016 2016年學術文章 2016年學術文章 artigo científico tudományos cikk artykuł naukowy bilimsel makale επιστημονικό άρθρο บทความทางวิทยาศาสตร์ artículo científico publicado en 2016
p:P577
wds:Q50549549-A2614FCD-A013-453C-A15E-9F4C68544B22
wdt:P577
2016-11-09T00:00:00Z
p:P407
wds:Q50549549-5BF42ED0-359A-4329-A6D8-414A0CDD861B
wdt:P407
wd:Q1860
p:P2860
wds:Q50549549-D29DE8B2-51AC-4EB7-80CB-CB9F42A286CA wds:Q50549549-DD6F55FF-AF39-494B-B9D2-4F817306CFD9 wds:Q50549549-ECE00353-EE20-4AB4-B3BE-734FB1C2462C wds:Q50549549-F04C89F7-C9AF-42ED-B4CD-F8A6B8C9FBD6 wds:Q50549549-FCCA117C-F48C-4EAB-A9CF-7AA275A243CD wds:Q50549549-A3951699-5482-4C09-87C8-195D2A80EDDD wds:Q50549549-A9C51791-C006-4518-870E-8A8B4A5CE91B wds:Q50549549-ABD1C02D-E214-4904-8FF3-9C9423400011 wds:Q50549549-B5C1A2F2-B72A-451E-8999-5E44E55296E4 wds:Q50549549-01F69D8E-31E2-4B39-8776-CCB69DD0BD26 wds:Q50549549-3BDAE845-5D95-44E9-9210-2AB625349FDC wds:Q50549549-4964B768-C275-4E6E-A463-833BE31BB3C4 wds:Q50549549-02459912-9139-4F8A-9E6B-7FCB16F5ED84 wds:Q50549549-4EBE5E66-DF57-45F4-8B5F-BFBA32348600 wds:Q50549549-5C8D3AC9-B485-4434-92A7-D72B8E8574E5 wds:Q50549549-5D4A5365-5C7B-473A-A40F-3F049ADD0071 wds:Q50549549-0432CD45-E17F-407C-B9D9-EB825EC96214 wds:Q50549549-133153AA-2E22-4FD8-847E-2C9FF98AD59E wds:Q50549549-19E5ED9B-0DAA-4CDF-8F8D-F017616A2B36 wds:Q50549549-299BD47D-955B-4400-8C2F-C26C0FA2335F wds:Q50549549-339B9941-1F57-4A55-AF3A-8ABD8813DB56 wds:Q50549549-8DB1341E-FEFE-470F-8CB8-C4F21B7AEFCA wds:Q50549549-9E9DEF43-8AF9-4111-9DA4-872F50BD34BA wds:Q50549549-5E3FF6A4-5EC6-4A6B-B986-19B52FED1BFB wds:Q50549549-65CC1079-8B3B-4836-B4CE-84A37272B206 wds:Q50549549-69883017-54F7-48EE-98FE-4BA487AC9D9D wds:Q50549549-77B6BECC-8B7E-429A-923A-A01A3F39DBC2 wds:Q50549549-782CD7B6-D3A1-4A33-B97B-D7F0A77191F7
wdt:P2860
wd:Q35586426 wd:Q41864515 wd:Q52224841 wd:Q86165264 wd:Q40684849 wd:Q46884562 wd:Q37264436 wd:Q51703473 wd:Q33204002 wd:Q28080832 wd:Q34597067 wd:Q47755444 wd:Q42864357 wd:Q38059066 wd:Q45930330 wd:Q39903425 wd:Q37818760 wd:Q52077514 wd:Q50955972 wd:Q50994018 wd:Q74823735 wd:Q37146176 wd:Q38031622 wd:Q51717002 wd:Q34734627 wd:Q30564109 wd:Q53231516 wd:Q37079687
p:P2093
wds:Q50549549-B1C420CC-40E0-4B5F-9A7F-5F3CE7203926 wds:Q50549549-9840B49F-E13A-49E2-8202-4B1F747A3790 wds:Q50549549-93E5842E-308E-486D-AE88-CA9C13FDEF63 wds:Q50549549-6A9488D3-FB4C-4CC0-8BEE-B15CA0BA41A8 wds:Q50549549-5CC4D38B-E211-49FB-AE09-E9A350D6D391 wds:Q50549549-036613E7-22BD-4139-B079-33868FFA6E4A wds:Q50549549-C995CA37-9F2A-44B0-AB6F-F76C1492537B
wdt:P2093
Stewart B Kirton Jogoth Ali Ben Forbes Marc Brown Joanna Muddle Andrew Muddle Irene Parisini
rdfs:label
Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.
skos:prefLabel
Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.
schema:name
Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.
p:P50
wds:Q50549549-96C12FD8-A5AE-4AD0-920C-4DCA74E7D5CA wds:Q50549549-207E32BE-519E-441E-8D4E-1B6ED23E42EA
wdt:P50
wd:Q29643391 wd:Q56251733
p:P1476
wds:Q50549549-9061CDCC-08A6-4AE2-BF72-8CC5FC489C02
wdt:P1476
Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks
p:P304
wds:Q50549549-819FC3EC-8C2B-423D-9834-392E45B6644F
wdt:P304
313-321
p:P31
wds:Q50549549-B50D1C7C-BD45-4BD1-ACEB-827407164C1D
wdt:P31
wd:Q13442814
p:P921
wds:Q50549549-5FE9A9AA-B22C-4789-BC58-C9FC68C622C4
wdt:P921
wd:Q192776
p:P698
wds:Q50549549-CEF67E0F-478B-47F5-A2E2-52FFD945B17B
wdtn:P698
n10:27837967
wdt:P698
27837967
p:P1433
wds:Q50549549-27645E60-B8D1-4C91-82B2-AD40104FC5D3
wdt:P1433
wd:Q3186933
p:P433
wds:Q50549549-53129D65-878C-4A94-9D31-4913BF6C8B40
p:P478
wds:Q50549549-C5A7DD09-3B9C-4931-AB24-A01B24BF3BB3
wdt:P433
1
wdt:P478
106
p:P356
wds:Q50549549-B80872F1-12FC-43E6-90C2-57260B037187
wdtn:P356
n11:J.XPHS.2016.10.002
wdt:P356
10.1016/J.XPHS.2016.10.002
p:P4510
wds:Q50549549-91CB0F1B-FEF9-4F70-B2BD-0783A1D62D7B
wdt:P4510
wd:Q192776