This HTML5 document contains 53 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n12https://dblp.org/rec/journals/sensors/
n13http://dx.doi.org/10.3390/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n9http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q97687615
rdf:type
wikibase:Item
schema:description
artículu científicu espublizáu en xunetu de 2020 wetenschappelijk artikel scientific article published on 22 July 2020 наукова стаття, опублікована 22 липня 2020 գիտական հոդված հրատարակված 2020 թվականի հուլիսի 22-ին
p:P577
wds:Q97687615-F19DCBF7-473B-42A1-91B8-F6B800416C27
wdt:P577
2020-07-22T00:00:00Z
p:P2093
wds:Q97687615-427295A4-6657-4EDF-8679-6A021D6E89A1
wdt:P2093
Nuno Bento
rdfs:label
ECG Biometrics Using Deep Learning and Relative Score Threshold Classification ECG Biometrics Using Deep Learning and Relative Score Threshold Classification
skos:prefLabel
ECG Biometrics Using Deep Learning and Relative Score Threshold Classification ECG Biometrics Using Deep Learning and Relative Score Threshold Classification
schema:name
ECG Biometrics Using Deep Learning and Relative Score Threshold Classification ECG Biometrics Using Deep Learning and Relative Score Threshold Classification
p:P50
wds:Q97687615-894BDC68-2ADD-4C95-A22E-8C85662647C8 wds:Q97687615-19143C88-A5E0-418E-8197-68791333A23B wds:Q97687615-0F7C6E5D-B6BF-4C94-8755-DBE7F05DD62C wds:Q97687615-E86DAA94-4E8C-4F80-A1E3-3681CCCC7462
wdt:P50
wd:Q63871919 wd:Q63974219 wd:Q55965590 wd:Q90278719
p:P1476
wds:Q97687615-675A704E-9B9A-4460-8D45-948999DED51B
wdt:P1476
ECG Biometrics Using Deep Learning and Relative Score Threshold Classification
p:P31
wds:Q97687615-508DDBB2-D4E9-4A37-9CFE-77AF48B8F7AB
wdt:P31
wd:Q13442814
p:P921
wds:Q97687615-89208568-E17C-4C3F-ABC8-8BB9D28DEE86 wds:Q97687615-32CB1C8B-FB0B-47A0-8F43-3AAE98A9113D
wdt:P921
wd:Q177765 wd:Q197536
p:P698
wds:Q97687615-618B06D4-E8D0-4DA4-9BB8-ADE404B33023
wdtn:P698
n9:32707861
wdt:P698
32707861
p:P8978
wds:Q97687615-D5ACE435-1E08-411F-B316-1768A49E3D89
wdtn:P8978
n12:BeloBSFG20
wdt:P8978
journals/sensors/BeloBSFG20
p:P1433
wds:Q97687615-BB523D66-A5B9-441C-9366-F4B2BC8A5039
wdt:P1433
wd:Q3478643
p:P433
wds:Q97687615-229ADB7A-7943-493A-B414-0F5DA38E237A
p:P478
wds:Q97687615-05463049-9F9E-4177-8B33-9B36D2511490
wdt:P433
15
wdt:P478
20
p:P356
wds:Q97687615-7E8DE065-E476-4ADA-99CC-D26D4C0AF17D
wdtn:P356
n13:S20154078
wdt:P356
10.3390/S20154078
p:P275
wds:Q97687615-16ed6e11-d6e4-44b6-9936-fd32e5f1a231
p:P6216
wds:Q97687615-7330d4b3-b522-4fcf-a96b-e66e5fc354bc
wdt:P275
wd:Q20007257
wdt:P6216
wd:Q50423863
p:P4510
wds:Q97687615-D8667B82-C539-4B1A-96BA-7A09BE9391D1
wdt:P4510
wd:Q197536