This HTML5 document contains 242 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://dx.doi.org/10.1038/
n5http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q96608993
rdf:type
wikibase:Item
schema:description
artículu científicu espublizáu en xunu de 2020 article scientifique publié en 2020 scientific article published on 15 June 2020 wetenschappelijk artikel наукова стаття, опублікована 15 червня 2020
p:P577
wds:Q96608993-6DE6FDB2-1F6B-4B4C-9845-C93D75B5FF3A
wdt:P577
2020-06-15T00:00:00Z
p:P2860
wds:Q96608993-03E74EB2-167C-4727-971A-A0C73A227B02 wds:Q96608993-0B8D90BE-E311-4961-A957-42185AA3FBC3 wds:Q96608993-17BAC471-2954-4905-95E0-BD39E896ED9F wds:Q96608993-1D21342F-DBB2-4A4F-93C5-6B392B745B05 wds:Q96608993-1D9CF8B7-C0E7-4179-B5AB-BB28CA27A35C wds:Q96608993-2023B71F-0396-44E2-9A11-878BF5A9DC53 wds:Q96608993-0DE63384-9070-456D-B33E-F2404E144A13 wds:Q96608993-13B68631-827E-43FC-AFFD-A074C1E669E0 wds:Q96608993-14DBFF1D-A6D3-4B2E-B72B-704F4082AF58 wds:Q96608993-14DD2D18-1C6A-4F00-96BD-0F6DC1A55D3D wds:Q96608993-312B18FC-3281-45F0-9BB2-12B51CB42360 wds:Q96608993-3196BC45-74AB-4442-A2D4-BDBD42ECE9C0 wds:Q96608993-325BA785-A81F-4FBA-A501-F74321F5735D wds:Q96608993-32A3568E-F9FA-4933-B8CC-A0EC8FD7217C wds:Q96608993-20EBA563-7BA8-4F1D-AC47-2FD6ED7EBD33 wds:Q96608993-24082F9F-CA02-4349-A7EB-EF59C7E9E6E6 wds:Q96608993-2612325E-C9A6-441B-BA32-0AE4F498E463 wds:Q96608993-3F16BF25-AC2C-4027-AFCC-70AD8E5E1497 wds:Q96608993-40252671-A137-45E8-8CAF-5B62910764C2 wds:Q96608993-409D7ADD-93F9-4E88-A8A2-263C03FCF202 wds:Q96608993-41589DE7-1910-4DAF-B280-1F4865417E5B wds:Q96608993-33973C4C-BCCE-49B3-9560-5C3AA8DA6B2A wds:Q96608993-3B3A30D9-F284-4F9B-8F67-5124D033F28F wds:Q96608993-3DA6554F-66B2-4FD4-99C6-3FEA44E85B43 wds:Q96608993-46E8D691-83A9-493D-A168-8C1D1B83B244 wds:Q96608993-478BEA42-DF2B-450B-8327-D4B65D410C79 wds:Q96608993-4987F236-96A8-4C7B-AE67-C25D3951B92E wds:Q96608993-4ADA7CA6-1512-41FB-9A06-6266603D3819 wds:Q96608993-4262202D-950A-4AD8-A0F6-532204C6D82F wds:Q96608993-43DE3074-8EC8-48AF-9CFB-4AC8D2A870BC wds:Q96608993-44942F78-C906-4161-B382-82303D268863 wds:Q96608993-44B7D625-85D8-4F5B-800E-96A80A7DEE68 wds:Q96608993-582A7BD9-C7D0-4DC4-8922-24B070EB388F wds:Q96608993-5C487F9D-4602-49E6-8A99-71317E178A98 wds:Q96608993-5DDE3993-994B-4EDA-8AB9-FF62ED32D0C5 wds:Q96608993-4B228610-AEA9-4809-9B32-21679A1C67CC wds:Q96608993-50F94781-5C4D-4819-856B-238AB48BFE2C wds:Q96608993-566D9062-1ECB-42B2-89D2-6DBB72FB1454 wds:Q96608993-6746EA15-A88A-496F-A4B7-BC1206CE079C wds:Q96608993-67A02A5D-A12F-4988-84E0-9ED85CA29CF4 wds:Q96608993-6963D931-2F01-4E7A-8DDB-2546BFE91C3E wds:Q96608993-6425697E-DA9F-48DE-B492-626D36A546F3 wds:Q96608993-657F501A-C04F-48AD-86FE-C041F843C1EA wds:Q96608993-65B429E7-5B2E-494F-A324-3B899BD1DC2E wds:Q96608993-672F8229-B988-4FD8-BE34-AF08F65FD81A wds:Q96608993-8B91B093-C2CA-4DEF-9669-41817A765B2C wds:Q96608993-8BE32EDD-17A8-45F6-BCD8-26299C40D76E wds:Q96608993-8DB60C77-FF9C-4358-9832-470CC7E9EED2 wds:Q96608993-924777C9-7793-451F-9907-99DE43241271 wds:Q96608993-6F20E591-FF36-4A13-807C-A325644CEFBA wds:Q96608993-7017ED58-6E0C-430D-807E-76E8D1243238 wds:Q96608993-86B87D42-0235-4DDB-BAB8-023D60FC9E23 wds:Q96608993-8B1560C9-39AC-4428-A0A1-12054E05FB5C wds:Q96608993-9B1BFCA2-04F3-4B60-9733-EEA6D67943DF wds:Q96608993-9E459AA4-489A-4FFF-B165-71C4EB1D35F4 wds:Q96608993-9E5EA2B5-1AD7-481F-8F59-C956C87A60A5 wds:Q96608993-9667E552-D659-4B39-B8B6-D97DE81BBEB3 wds:Q96608993-96B8DA15-37C5-42E4-AFEA-84F515C6F053 wds:Q96608993-9A454996-1E22-45BD-8DA6-E427184B08A1 wds:Q96608993-9B199B87-8AF6-453B-BBB1-29A144027042 wds:Q96608993-A23FD9C0-B130-4A8D-BCCC-324D4F832A0B wds:Q96608993-A778BF4D-7965-4DE4-8029-C7E15310A5B2 wds:Q96608993-9E7AC4FC-6302-48B1-9F6E-58DE0B354610 wds:Q96608993-A039DECA-D8EA-4FDE-B089-477CAE57635F wds:Q96608993-A170C9A7-A692-4B8F-BB63-C70F865321B1 wds:Q96608993-A1D1827F-AD5F-4368-B0E2-7B1B17624152 wds:Q96608993-B503AD07-A7AB-4B7D-A732-93709795BCB9 wds:Q96608993-B798FF24-3590-4597-8738-93263C8D6101 wds:Q96608993-BA79F24F-7DFA-4C41-A3B3-8B9BE40A92FC wds:Q96608993-BAB23066-1CC4-4BD0-BFFA-B56BF4143A74 wds:Q96608993-AA62E7BE-C523-4930-B797-EFB25EC36882 wds:Q96608993-AB896567-6FAE-4990-BEC8-A3A713724554 wds:Q96608993-AD563090-C81A-4C79-9820-5F3415890D33 wds:Q96608993-B1C81DCF-445C-4092-937E-BDDB356BF032 wds:Q96608993-C49F3557-4F16-42B8-B129-C976F6B08C11 wds:Q96608993-C4D7B09F-99FF-4ABD-9BE1-FF4BD415FD96 wds:Q96608993-C8104B1A-5734-4FCE-BDEF-535DD80533F0 wds:Q96608993-BB837F30-85F7-4111-85D3-385A4C1BCCCB wds:Q96608993-C0039ACE-9F4F-435C-B766-657B548E72BF wds:Q96608993-C3F361AC-234E-4264-AD55-FFDBD35F3F3D wds:Q96608993-D9564BAD-E9D1-437A-95E4-6C1B01CBFD27 wds:Q96608993-DAB4BB71-6389-4E86-9F2F-EBF037B1348C wds:Q96608993-DC4889E5-2921-499C-BD68-43C87F5DCEF5 wds:Q96608993-DCBD1CA0-94E8-4411-9762-18DEAD25D58F wds:Q96608993-CFF32262-3B55-47A5-AD2D-F9827F6458E2 wds:Q96608993-D0D686FA-4A1A-418C-9891-0BC32C9BE6E6 wds:Q96608993-D2B7189E-2254-4509-A71D-FE4A5E070D7A wds:Q96608993-E90CEC97-B62D-4C5C-B3B9-EEF00A0082CE wds:Q96608993-EA44A7D5-C1CE-4F43-BDE2-CE1B5B075C14 wds:Q96608993-EEFF19CF-6DB4-47FA-8CF3-18CDF89B93D1 wds:Q96608993-F119AE29-FFF2-4B42-8F9D-D4996F480DD7 wds:Q96608993-DD32FFD7-BD1A-4BCF-A933-7A528085AC6C wds:Q96608993-E1901D7D-0217-42C8-BF25-C259FBF54B8B wds:Q96608993-E2CC7B1F-403A-4B49-9CC2-9213F43563F6 wds:Q96608993-E62D4882-50AC-474F-B76A-43DB408215B3 wds:Q96608993-FC674CDD-B035-4759-A8CD-CD32BBD433FF wds:Q96608993-FDFE6F1E-4244-4483-9C03-D1F945217E7B wds:Q96608993-FA979EE0-1308-46A4-ABD1-0721A8699019 wds:Q96608993-FAA083B8-AAD6-4B1E-B388-9EE1BCB335B7
wdt:P2860
wd:Q52659131 wd:Q38826826 wd:Q36958682 wd:Q38785790 wd:Q39550940 wd:Q37140236 wd:Q89313942 wd:Q36855805 wd:Q34410309 wd:Q28487333 wd:Q47134581 wd:Q48500250 wd:Q45352809 wd:Q36009874 wd:Q38893868 wd:Q26767036 wd:Q34437369 wd:Q28199928 wd:Q58764571 wd:Q34793900 wd:Q58797494 wd:Q27321859 wd:Q36248734 wd:Q88243551 wd:Q47322115 wd:Q36335514 wd:Q37039879 wd:Q35607837 wd:Q44093928 wd:Q34103200 wd:Q27851616 wd:Q50419862 wd:Q47172395 wd:Q49584905 wd:Q52692152 wd:Q56985387 wd:Q55216429 wd:Q47304399 wd:Q29616694 wd:Q35757208 wd:Q28308193 wd:Q24812860 wd:Q38812641 wd:Q38742617 wd:Q49505205 wd:Q49789793 wd:Q38770137 wd:Q27301054 wd:Q38737057 wd:Q29547695 wd:Q34538858 wd:Q30371323 wd:Q40109230 wd:Q34313686 wd:Q61661587 wd:Q42635307 wd:Q91826369 wd:Q47236022 wd:Q62648606 wd:Q45943943 wd:Q53939793 wd:Q38037329 wd:Q92572775 wd:Q38646272 wd:Q30858364 wd:Q50068010 wd:Q34567814 wd:Q47561424 wd:Q37542251 wd:Q26783055 wd:Q41593386 wd:Q27824829 wd:Q38770451 wd:Q28268169 wd:Q92237808 wd:Q34557699 wd:Q37004251 wd:Q30405622 wd:Q41197854 wd:Q33431541 wd:Q34376320 wd:Q89156862 wd:Q34767007 wd:Q38782268 wd:Q34347892 wd:Q47385759 wd:Q38828100 wd:Q52719529 wd:Q64137667 wd:Q42380390 wd:Q91603658 wd:Q47290651 wd:Q56041025 wd:Q60142201 wd:Q91845591 wd:Q42697214 wd:Q55399288 wd:Q39763281 wd:Q29614975
p:P2093
wds:Q96608993-A815EADC-DAB0-4AB6-9F53-B5171489E574 wds:Q96608993-A72EF852-AE0D-40DC-80A9-6C8E9F37E2E5 wds:Q96608993-37ED02FB-049A-495E-815D-E5C31F2AA3AB
wdt:P2093
Anna Goldenberg Benjamin Haibe-Kains Zhaleh Safikhani
rdfs:label
Machine learning approaches to drug response prediction: challenges and recent progress Machine learning approaches to drug response prediction: challenges and recent progress
skos:prefLabel
Machine learning approaches to drug response prediction: challenges and recent progress Machine learning approaches to drug response prediction: challenges and recent progress
schema:name
Machine learning approaches to drug response prediction: challenges and recent progress Machine learning approaches to drug response prediction: challenges and recent progress
p:P50
wds:Q96608993-F168FFD0-4432-4BC6-A143-030266548EC9 wds:Q96608993-F49F5FF7-93BE-4327-A47B-370372742ACB wds:Q96608993-C93C172A-5A0B-4CED-9EC4-11E1968C097C
wdt:P50
wd:Q92237805 wd:Q58270856 wd:Q58032534
p:P1476
wds:Q96608993-9CC89337-143B-494E-85CD-104EE234452A
wdt:P1476
Machine learning approaches to drug response prediction: challenges and recent progress
p:P304
wds:Q96608993-FE4D3678-E9C1-4BB2-8F30-24D886E2F6F5
wdt:P304
19
p:P31
wds:Q96608993-22C5A111-8159-4A83-9295-0D39DCCB5B48
wdt:P31
wd:Q13442814
p:P921
wds:Q96608993-BCB8BDA5-879C-4E8B-AA6C-A4FC808E506A
wdt:P921
wd:Q2539
p:P698
wds:Q96608993-C78561DD-F4DA-40D9-8F0D-8A8C4EBF863A
wdtn:P698
n5:32566759
wdt:P698
32566759
p:P1433
wds:Q96608993-6219775A-CF10-4767-BF4A-D4C315ACCA96
wdt:P1433
wd:Q50817392
p:P478
wds:Q96608993-5048AC80-8744-4D5A-B8A9-DF50B6D4B706
wdt:P478
4
p:P356
wds:Q96608993-09383155-7621-44EF-BAC8-D38F238457E3
wdtn:P356
n11:S41698-020-0122-1
wdt:P356
10.1038/S41698-020-0122-1