This HTML5 document contains 53 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n12https://dblp.org/rec/journals/sensors/
n10http://dx.doi.org/10.3390/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n9http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q91802528
rdf:type
wikibase:Item
schema:description
wetenschappelijk artikel scientific article published on 10 July 2019 наукова стаття, опублікована 10 липня 2019 artículu científicu espublizáu en xunetu de 2019 2019 թվականի հուլիսի 10-ին հրատարակված գիտական հոդված
p:P577
wds:Q91802528-67FC584A-BDE4-48F6-9EEF-3199D33F4E49
wdt:P577
2019-07-10T00:00:00Z
p:P2860
wds:Q91802528-080E12F0-A399-4378-9CC0-3FBBCC359A76 wds:Q91802528-35677F22-95BC-4795-88BB-895AF7C91D81
wdt:P2860
wd:Q45945251 wd:Q58041444
rdfs:label
Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters
skos:prefLabel
Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters
schema:name
Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters
p:P50
wds:Q91802528-F5AC8158-E9ED-4BAC-B534-BE68376507E6 wds:Q91802528-059B411C-2A78-4771-9EDF-10470975FDDC
wdt:P50
wd:Q58683138 wd:Q90398139
p:P1476
wds:Q91802528-8CFE47B5-B0A5-4C73-BE7E-4E7B3DD93842
wdt:P1476
Automatic Classification Using Machine Learning for Non-Conventional Vessels on Inland Waters
p:P31
wds:Q91802528-92E53DB3-D38C-4FF8-A4BA-367AD243EEAD
wdt:P31
wd:Q13442814
p:P921
wds:Q91802528-1B01735B-C7E4-4749-AC63-77F4DF79B0CD wds:Q91802528-9C184730-0932-4AA4-9122-3974A63881E7
wdt:P921
wd:Q863944 wd:Q2539
p:P698
wds:Q91802528-FFE40D7A-1AE8-46AC-B5DA-758684BAA848
wdtn:P698
n9:31295955
wdt:P698
31295955
p:P8978
wds:Q91802528-E0D70AE6-10A2-4226-BC24-088A81EE8429
wdtn:P8978
n12:Wlodarczyk-Sielicka19
wdt:P8978
journals/sensors/Wlodarczyk-Sielicka19
p:P1433
wds:Q91802528-E4E4F46F-DD67-48CF-8E3E-399C0A609225
wdt:P1433
wd:Q3478643
p:P433
wds:Q91802528-5A761E04-E737-421D-BCA5-DC9C0C0DE890
p:P478
wds:Q91802528-CA8EB49C-4EB0-412F-8FDC-CF1815223A94
wdt:P433
14
wdt:P478
19
p:P356
wds:Q91802528-D598EEF6-6583-49C3-9F80-0E965367F3B8
wdtn:P356
n10:S19143051
wdt:P356
10.3390/S19143051
p:P275
wds:Q91802528-026388a8-96e8-4f16-abdd-5433bee3c063
p:P6216
wds:Q91802528-08226508-4023-4cb6-991b-177a8e08b955
wdt:P275
wd:Q20007257
wdt:P6216
wd:Q50423863
p:P4510
wds:Q91802528-BCAB3895-4660-4205-9FCF-C0BE8A0A6D49
wdt:P4510
wd:Q2539
p:P932
wds:Q91802528-4B34A163-CDB8-4173-B29A-91E51823059E
wdt:P932
6678768