This HTML5 document contains 147 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n12http://dx.doi.org/10.3348/
n9http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q90208984
rdf:type
wikibase:Item
schema:description
научна статия scientific article published in October 2019 vědecký článek article científic 2019 nî lūn-bûn wetenschappelijk artikel 2019年學術文章 2019年学术文章 naučni članak tieteellinen artikkeli artykuł naukowy 2019年学术文章 artikull shkencor artículu científicu 2019年學術文章 artigo científico 2019年学术文章 artículo científico publicado en 2019 scientific article published in October 2019 мақолаи илмӣ vitenskapelig artikkel articol științific অক্টোবর ২০১৯-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ artikel ilmiah scientific article published on 01 October 2019 2019年學術文章 teaduslik artikkel wissenschaftlicher Artikel bài báo khoa học vedecký článok artigo científico 2019年学术文章 научная статья videnskabelig artikel udgivet oktober 2019 מאמר מדעי наукова стаття, опублікована в жовтні 2019 مقالة علمية نشرت في أكتوبر 2019 vitskapeleg artikkel scienca artikolo 2019年の論文 научни чланак 2019年學術文章 2019年学术文章 articolo scientifico სამეცნიერო სტატია article scientific artikulong pang-agham 2019年學術文章 tudományos cikk научни чланак 2019년 논문 บทความทางวิทยาศาสตร์ bilimsel makale 2019年学术文章 artigo científico vetenskaplig artikel article scientifique επιστημονικό άρθρο
p:P577
wds:Q90208984-4CAA0933-8F92-40EE-97F4-7DDA07FB5B30
wdt:P577
2019-10-01T00:00:00Z
p:P2860
wds:Q90208984-1883FF84-2410-4D2C-865B-F59D47C2C432 wds:Q90208984-36B22E52-D1E9-40FF-A370-E00E24F7B132 wds:Q90208984-07897AF1-73D6-474A-BDD2-C2940BD04823 wds:Q90208984-07AF70E2-860F-4A22-AED8-F9D9B68DC013 wds:Q90208984-F5982C8E-8D68-4F51-8B5B-D52AC79C747D wds:Q90208984-E7587713-D51C-409D-AB2C-EC2CEC132428 wds:Q90208984-F500685D-8BEB-40C9-B38C-D4EE5ED26D02 wds:Q90208984-CD727CD0-9E51-43AF-BA1A-F9C7A75CA62E wds:Q90208984-D3AF5458-F8A8-4D99-B5CA-57FE4E03B5A1 wds:Q90208984-9F481774-61F2-4151-8349-7129B66C1F8E wds:Q90208984-A3F4F4EE-E4D7-4EF5-9EFE-5E5585C47CE8 wds:Q90208984-7034E739-CD2C-4EAE-B1E6-FB6076222FE3 wds:Q90208984-90A6010F-4EBF-4EC9-AC33-16E071A71063 wds:Q90208984-5FB7094B-E03F-4FC7-AA99-FA6FD3F1FE17 wds:Q90208984-39D74FF0-E917-4ABB-B46C-D0B20C5447D1 wds:Q90208984-39D1EB4D-9E3B-4353-876C-2DFD543192C8 wds:Q90208984-3EE6E3DC-2C0F-4A0F-9C9D-6AAF8E047D17
wdt:P2860
wd:Q42355433 wd:Q38878175 wd:Q48054500 wd:Q88454040 wd:Q45106446 wd:Q50077821 wd:Q37324252 wd:Q38916435 wd:Q36235653 wd:Q35206996 wd:Q34502075 wd:Q38666618 wd:Q34527574 wd:Q44310442 wd:Q23760721 wd:Q36724769 wd:Q38972275
rdfs:label
Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer
skos:prefLabel
Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer
schema:name
Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer
p:P50
wds:Q90208984-5A6BF9F0-588E-4B82-9F9A-576F4951F918 wds:Q90208984-7E8B0AED-C368-4E90-B11D-AC7AA8D0CB9B wds:Q90208984-D47FFCAA-E151-42A2-8533-29CAB544DB38 wds:Q90208984-E225A016-6EF2-4DBF-AAA6-AC5CEE24EBFA wds:Q90208984-F3AA95CF-B3ED-4E4F-A2CE-AFAD9B92EF56 wds:Q90208984-F8E9AFA9-0086-4881-ACD8-4E9377C88A6F wds:Q90208984-1DCC50BE-6299-4301-88E0-BABE5A10697D wds:Q90208984-22E6772F-5A77-4821-8267-30019742D67D
wdt:P50
wd:Q57011116 wd:Q57011105 wd:Q58661383 wd:Q87355491 wd:Q90208979 wd:Q90208972 wd:Q90208967 wd:Q90208975
p:P1476
wds:Q90208984-14668A99-B069-408D-AA1A-368F5FE63C41
wdt:P1476
Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer
p:P304
wds:Q90208984-C3762F81-C192-4E82-8879-809207A117B1
wdt:P304
1431-1440
p:P31
wds:Q90208984-41CB766E-F98E-4545-9459-BEDDED56294C
wdt:P31
wd:Q13442814
p:P921
wds:Q90208984-427DEF98-BD36-4989-8E47-BAD2C2E0FA0A wds:Q90208984-813952F2-2CFD-4CCB-A05E-F3B64C3F8182
wdt:P921
wd:Q1425625 wd:Q197536
p:P698
wds:Q90208984-9A5F5AF7-0EB8-47F3-95BD-97540427F733
wdtn:P698
n9:31544368
wdt:P698
31544368
p:P1433
wds:Q90208984-50039462-2F94-4270-9C6D-7A6A80704C96
wdt:P1433
wd:Q26842124
p:P433
wds:Q90208984-FA33B213-0A0C-421F-B5DB-DAD2D9222FA5
p:P478
wds:Q90208984-5CEE5C0F-1907-4B51-B33B-8DF65D7DBCEA
wdt:P433
10
wdt:P478
20
p:P1104
wds:Q90208984-C1CAF35F-387A-4626-AEFF-EE281F795161
wdt:P1104
10
p:P356
wds:Q90208984-437348A1-42A6-4DB3-933E-95086B060C55
wdtn:P356
n12:KJR.2019.0212
wdt:P356
10.3348/KJR.2019.0212
p:P275
wds:Q90208984-a8294935-a1d1-487b-8c46-6e7bb5af3a84
p:P6216
wds:Q90208984-44beaee1-aad8-49dd-9719-29493441832a
wdt:P275
wd:Q34179348
wdt:P6216
wd:Q50423863
p:P932
wds:Q90208984-F645B88D-7CD1-40A9-9485-E26862AE2B99
wdt:P932
6757001