This HTML5 document contains 136 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n11http://dx.doi.org/10.1186/
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n10http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q90042769
rdf:type
wikibase:Item
schema:description
2019年學術文章 videnskabelig artikel udgivet 10. september 2019 2019年学术文章 2019年学术文章 artikull shkencor artículu científicu 2019年学术文章 bài báo khoa học სამეცნიერო სტატია ১০ সেপ্টেম্বর ২০১৯-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ artigo científico научни чланак articol științific artículo científico publicado en 2019 artikel ilmiah scienca artikolo article scientific מאמר מדעי scientific article published on 10 September 2019 научная статья teaduslik artikkel 2019 թվականի սեպտեմբերի 10-ին հրատարակված գիտական հոդված 2019年學術文章 vetenskaplig artikel مقالة علمية نشرت في 10 سبتمبر 2019 article scientifique vedecký článok 2019年学术文章 vědecký článek artigo científico article científic 2019年の論文 2019年學術文章 tudományos cikk научни чланак vitenskapelig artikkel articolo scientifico наукова стаття, опублікована у вересні 2019 naučni članak 2019년 논문 2019年学术文章 научна статия 2019年學術文章 scientific article published on 10 September 2019 artikulong pang-agham 2019年学术文章 bilimsel makale επιστημονικό άρθρο artigo científico wetenschappelijk artikel 2019 nî lūn-bûn wissenschaftlicher Artikel 2019年學術文章 vitskapeleg artikkel บทความทางวิทยาศาสตร์ scientific article published on 10 September 2019 artykuł naukowy мақолаи илмӣ tieteellinen artikkeli
p:P577
wds:Q90042769-911C3385-7A77-4F91-AFC4-707CB61A73C5
wdt:P577
2019-09-10T00:00:00Z
p:P2860
wds:Q90042769-189D7A6C-5255-4DA4-A10A-F661042F0E4B wds:Q90042769-28ACB016-C37B-4534-84C7-595771214BA6 wds:Q90042769-7D661644-F1C9-4207-A877-9EA40BAFF355 wds:Q90042769-479A2866-8A7B-441D-92EC-7133EE55E09C wds:Q90042769-54A0ECFC-8C2F-4D7A-9F64-4E8CBBEBECB1 wds:Q90042769-A732E183-3ADE-45E8-A467-E45E47201E9D wds:Q90042769-D158F78F-C526-4F48-84EC-060AEACBA13E wds:Q90042769-B6017E6C-242D-411A-9284-9BCBC834EFA4 wds:Q90042769-C26656E5-9209-4412-A7D6-B7BC8B00A59A wds:Q90042769-C5A08E3D-06E7-4795-8D34-BF6D0C3E4F92
wdt:P2860
wd:Q53246749 wd:Q42940011 wd:Q34682174 wd:Q33448659 wd:Q38937518 wd:Q56985318 wd:Q47590597 wd:Q34524689 wd:Q45947520 wd:Q27887654
p:P2093
wds:Q90042769-3409E8C9-593F-4A35-A388-044BC250329E wds:Q90042769-4330D248-D702-4B61-87DD-C0C54B1E8C10 wds:Q90042769-9D7A244B-F42C-41A8-ABE6-D0D6812CA4FD wds:Q90042769-840C1BB2-625A-4ADC-B881-E7FDEFCF6E6D wds:Q90042769-A11679C6-2C90-4A63-A87E-A4FB2EDD98B2 wds:Q90042769-A13509A5-C4D7-4FDE-BB2C-F80044AAC5B0 wds:Q90042769-D1223335-4AC7-4DB6-82B1-666FCF612E6C wds:Q90042769-E776F2D7-5FA2-43C1-9650-B7044359EB70 wds:Q90042769-EFCBD9BA-D0BB-4260-9D4B-E5474D28FF4A
wdt:P2093
Alex Buchanan Kyle Ellrott Thomas Schaffter Michael Mason Joshua M Stuart Paul C Boutros Bruce Hoff James Eddy Allison Creason
rdfs:label
Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges
skos:prefLabel
Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges
schema:name
Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges
p:P50
wds:Q90042769-6EFC3803-BCEB-4C0B-9CA4-566BEC81CCE4 wds:Q90042769-8004500E-2AED-4B2E-A0C4-D2BEDB08C5A6 wds:Q90042769-BE587EB8-44BA-46DF-B909-354B362C1D8A wds:Q90042769-CA70CA9F-7818-4B52-9DC5-9A0BFEF58018 wds:Q90042769-9D50EC98-73DC-4C50-9757-09A9BECF7F37
wdt:P50
wd:Q58220840 wd:Q57157188 wd:Q41046233 wd:Q89323197 wd:Q41044850
p:P1476
wds:Q90042769-F26BC3AC-9E5B-4E59-8026-4DE6CF98BC89
wdt:P1476
Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges
p:P304
wds:Q90042769-FFC418A7-96FC-4007-AA8D-20FF5A38C509
wdt:P304
195
p:P31
wds:Q90042769-FDF404C4-0956-48B6-BB9C-88D69C9467D6
wdt:P31
wd:Q13442814
p:P698
wds:Q90042769-ABD2E937-699E-43BC-ACBB-30DAEE8DCE88
wdtn:P698
n10:31506093
wdt:P698
31506093
p:P1433
wds:Q90042769-05A63DCC-66E7-4EF4-ACC0-C35BD9B7DAD0
wdt:P1433
wd:Q5533480
p:P433
wds:Q90042769-CBF43356-B07C-49FC-A421-028B3C510020
p:P478
wds:Q90042769-1BCC86E4-141B-4A9E-8CCE-90D244F10A20
wdt:P433
1
wdt:P478
20
p:P356
wds:Q90042769-7DA040DE-C2A1-4ACB-ABAB-96BF5446A8B6
wdtn:P356
n11:S13059-019-1794-0
wdt:P356
10.1186/S13059-019-1794-0
p:P932
wds:Q90042769-F7AC72D7-189E-47C4-8CEC-7976D3E87588
wdt:P932
6737594