This HTML5 document contains 38 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n12http://dx.doi.org/10.1038/
n10http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q77788507
rdf:type
wikibase:Item
schema:description
scientific article published on 01 April 1999 наукова стаття, опублікована у квітні 1999 artículu científicu espublizáu n'abril de 1999 wetenschappelijk artikel article scientifique publié en 1999
p:P577
wds:Q77788507-54CC654B-1386-43E9-B9E7-2740C79DA595
wdt:P577
1999-04-01T00:00:00Z
p:P2093
wds:Q77788507-1E92740C-5240-4FF7-B22C-FDF076CC7187 wds:Q77788507-287BA7C2-0380-42F6-B982-4C1A87670763 wds:Q77788507-A2F8D53B-D837-4AA4-9EF4-2A37DD8EF93E
wdt:P2093
S Williams G Davie F Lam
rdfs:label
Predicting BMI in young adults from childhood data using two approaches to modelling adiposity rebound Predicting BMI in young adults from childhood data using two approaches to modelling adiposity rebound
skos:prefLabel
Predicting BMI in young adults from childhood data using two approaches to modelling adiposity rebound Predicting BMI in young adults from childhood data using two approaches to modelling adiposity rebound
schema:name
Predicting BMI in young adults from childhood data using two approaches to modelling adiposity rebound Predicting BMI in young adults from childhood data using two approaches to modelling adiposity rebound
p:P1476
wds:Q77788507-77E3ACAC-0DCA-41FE-BA51-C1F538C1F40A
wdt:P1476
Predicting BMI in young adults from childhood data using two approaches to modelling adiposity rebound
p:P304
wds:Q77788507-8514901D-A901-436D-B8E6-1D34075A3189
wdt:P304
348-354
p:P31
wds:Q77788507-C86EF8EE-1C8C-488B-95D2-75AD7333E2F9
wdt:P31
wd:Q13442814
p:P698
wds:Q77788507-F7F62070-7BF8-49A7-8A13-1E7F7DE9EAB4
wdtn:P698
n10:10340811
wdt:P698
10340811
p:P433
wds:Q77788507-33BC90D0-5162-454F-A4D8-EFB0434C854C
p:P478
wds:Q77788507-D72D6F60-1857-4121-A598-BB2A96FB3A1B
wdt:P433
4
wdt:P478
23
p:P356
wds:Q77788507-5A0ACEE3-A17A-4049-8D0F-B8386C1D3E1A
wdtn:P356
n12:SJ.IJO.0800824
wdt:P356
10.1038/SJ.IJO.0800824
p:P859
wds:Q77788507-8AEB57FA-C180-4B60-B4B8-A4F54306FB37
wdt:P859
wd:Q5314977