This HTML5 document contains 34 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n9http://dx.doi.org/10.1016/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q62593259
rdf:type
wikibase:Item
schema:description
wetenschappelijk artikel наукова стаття, опублікована в липні 2016 article scientifique publié en 2016 im Juli 2016 veröffentlichter wissenschaftlicher Artikel
p:P577
wds:Q62593259-AA3B7E72-5878-4342-813A-DAFC9F43ECBD
wdt:P577
2016-07-01T00:00:00Z
p:P2093
wds:Q62593259-DD087D2E-211E-433F-BA7C-E48D9D0D5D8E wds:Q62593259-7C0294E7-58BF-4A93-B42C-7D9DF66A08BF
wdt:P2093
Chenbin Zhang Ji Wu
rdfs:label
An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks
skos:prefLabel
An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks
schema:name
An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks
p:P50
wds:Q62593259-C146C994-F471-47BD-AEE0-70196E13E7A5
wdt:P50
wd:Q56556135
p:P1476
wds:Q62593259-6C46BFE7-B9F7-46C0-AA51-F8F3467ADCC8
wdt:P1476
An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks
p:P304
wds:Q62593259-A409409F-1AF1-4683-BDDA-9A7C103945F5
wdt:P304
134-140
p:P31
wds:Q62593259-986566FB-9F4B-4038-85FA-C597CE5B19E6
wdt:P31
wd:Q13442814
p:P921
wds:Q62593259-97C2FF5A-6622-4817-B512-247F3AEB90EC
wdt:P921
wd:Q2822895
p:P1433
wds:Q62593259-53A21E73-F2EB-450B-B8A5-E7B1F959CD12
wdt:P1433
wd:Q15752358
p:P478
wds:Q62593259-D9583996-1F39-4A91-88A2-C1E8076A2627
wdt:P478
173
p:P356
wds:Q62593259-E253F0BB-D5DB-477B-8168-1DCEFD6046FC
wdtn:P356
n9:J.APENERGY.2016.04.057
wdt:P356
10.1016/J.APENERGY.2016.04.057