This HTML5 document contains 51 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n11http://dx.doi.org/10.1109/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q60041065
rdf:type
wikibase:Item
schema:description
article scientifique publié en 2015 wetenschappelijk artikel наукова стаття, опублікована у вересні 2015
p:P577
wds:Q60041065-2B89651A-2F97-4516-A084-42577941DEA1
wdt:P577
2015-09-01T00:00:00Z
p:P2093
wds:Q60041065-A138F535-B29C-47B2-B899-2E602E4DC0EE wds:Q60041065-B6C871DF-B570-4CA7-A651-3FCCC34AD568 wds:Q60041065-BBB341B3-DFB0-483D-AA13-F5701C864A84 wds:Q60041065-2EB01103-B4DD-4AF7-A077-8744B09C7D0B
wdt:P2093
Andrea Kubler Francisco Gomez Dorothee Lule Jorge Victorino
rdfs:label
Improving EEG-BCI analysis for low certainty subjects by using dictionary learning Improving EEG-BCI analysis for low certainty subjects by using dictionary learning
skos:prefLabel
Improving EEG-BCI analysis for low certainty subjects by using dictionary learning Improving EEG-BCI analysis for low certainty subjects by using dictionary learning
schema:name
Improving EEG-BCI analysis for low certainty subjects by using dictionary learning Improving EEG-BCI analysis for low certainty subjects by using dictionary learning
p:P50
wds:Q60041065-09DD3A0A-2485-4783-97B1-7BF945F055DD wds:Q60041065-11CE6879-0F9E-429D-BC63-08A29D09433A wds:Q60041065-1D5220BE-80ED-45FF-80FC-E9B08412B16C wds:Q60041065-2037BD11-951F-46EB-A2AF-DB2DD5E9D74D wds:Q60041065-6EAD004E-40D1-4AB0-8F0F-7C0B53323D15 wds:Q60041065-81147C04-794D-44F3-90BA-EE335DB589A0 wds:Q60041065-84C3927C-330D-4D5A-9776-396078F83A5C wds:Q60041065-8BEDBB94-CD4E-4BB2-AE50-1F876491FD2B wds:Q60041065-A6A68A7F-F70D-49C2-8AB6-19706BFAC629 wds:Q60041065-D6F7D67A-488D-46F1-A7EE-9484B23FF919 wds:Q60041065-F40A0B20-89B7-40E8-BE58-6D7625B7319E wds:Q60041065-F957B80B-315D-45C1-9952-28FEB3743DDE
wdt:P50
wd:Q81385472 wd:Q42374683 wd:Q89851264 wd:Q117206614 wd:Q91788056 wd:Q60924576 wd:Q102203909 wd:Q676661 wd:Q93038094 wd:Q37370770 wd:Q91951273 wd:Q59664531
p:P1476
wds:Q60041065-3A23ABA4-F64A-4BDC-8300-52112015F4C8
wdt:P1476
Improving EEG-BCI analysis for low certainty subjects by using dictionary learning
p:P31
wds:Q60041065-9E5C95A1-4B31-462A-A666-79408DF2AFF7
wdt:P31
wd:Q13442814
p:P356
wds:Q60041065-88402ABD-77F3-4A37-9042-DDD068117917
wdtn:P356
n11:STSIVA.2015.7330408
wdt:P356
10.1109/STSIVA.2015.7330408