This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n10http://dx.doi.org/10.1016/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q59836185
rdf:type
wikibase:Item
schema:description
im August 2014 veröffentlichter wissenschaftlicher Artikel scholarly article by Markus Diesing published in August 2014 wetenschappelijk artikel наукова стаття, опублікована в серпні 2014
p:P577
wds:Q59836185-EC6A4B24-2F63-4E0A-B056-4090E87C92E7
wdt:P577
2014-08-01T00:00:00Z
p:P2093
wds:Q59836185-158480E1-73E4-409C-B8AB-90E70F9D18C1 wds:Q59836185-02BEFCF6-99BA-40FD-B1A9-94A00E2F3290
wdt:P2093
David Stephens Sophie L. Green
rdfs:label
Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches
skos:prefLabel
Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches
schema:name
Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches
p:P50
wds:Q59836185-47C1ABC2-5CDA-47F1-A896-FED2A5AC6354 wds:Q59836185-BF7E9D40-EF2A-4E5B-8459-51210A45ABAC wds:Q59836185-D0719821-1402-49CD-9F44-1607F8C8E375 wds:Q59836185-82DAFF09-75D8-488D-8914-89F6A3124334
wdt:P50
wd:Q55426361 wd:Q59699304 wd:Q56551098 wd:Q122974331
p:P1476
wds:Q59836185-750A8168-657C-4FAD-89B4-32B0EB17D7BB
wdt:P1476
Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches
p:P304
wds:Q59836185-FE3FC4D3-33EA-48F9-8705-3B3A66C2B7E3
wdt:P304
107-119
p:P31
wds:Q59836185-D69AA14E-3B84-45D8-9E13-079C1651566F
wdt:P31
wd:Q13442814
p:P921
wds:Q59836185-844E4E84-5301-4F3D-8833-83DB463CD0A5 wds:Q59836185-FC14A48F-9181-4B04-AEA3-868834265053 wds:Q59836185-33B3ABA7-E0A2-492C-BDED-A59C31251525 wds:Q59836185-268DC99E-DE32-4264-BA3F-0E5B4C2405CD
wdt:P921
wd:Q860755 wd:Q2539 wd:Q43518 wd:Q4782809
p:P1433
wds:Q59836185-7E0B1671-1432-45E5-8D64-26AAAD486567
wdt:P1433
wd:Q15750085
p:P478
wds:Q59836185-A71B1168-40D6-4230-96A6-772CD88C465B
wdt:P478
84
p:P356
wds:Q59836185-3722411D-612E-4EA8-B5C5-EA6686459EE7
wdtn:P356
n10:J.CSR.2014.05.004
wdt:P356
10.1016/J.CSR.2014.05.004