This HTML5 document contains 51 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n11http://dx.doi.org/10.1039/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n9http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q57784228
rdf:type
wikibase:Item
schema:description
գիտական հոդված հրատարակված 2018 թվականի հոկտեմբերի 1-ին wetenschappelijk artikel scientific article published on 01 October 2018 im Oktober 2018 veröffentlichter wissenschaftlicher Artikel наукова стаття, опублікована в жовтні 2018 artículu científicu espublizáu n'ochobre de 2018
p:P577
wds:Q57784228-926402C3-E438-4B65-9CAE-093C3F188B9A
wdt:P577
2018-10-01T00:00:00Z
p:P407
wds:Q57784228-3315480E-66CD-41AF-B99B-DE4306BD5441
wdt:P407
wd:Q1860
p:P2093
wds:Q57784228-777A7984-6603-4B54-A7E7-1F35BFD1D4DD wds:Q57784228-5CDF8318-AB71-4316-8A78-E84FA1B1CAC2 wds:Q57784228-EF66EEAD-5B91-4FB8-99E8-3394ADC5F44E
wdt:P2093
Lantian Xue Qunchao Tong Yanchao Wang
rdfs:label
Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface
skos:prefLabel
Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface
schema:name
Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface
p:P50
wds:Q57784228-C841F617-529B-44D4-A7C0-8D495F5887F0 wds:Q57784228-6CB2334C-87EC-4431-9A57-7AA41314D353
wdt:P50
wd:Q60045896 wd:Q51332619
p:P1476
wds:Q57784228-259CAA27-3B70-4AAF-A908-5FBBC41F03E8
wdt:P1476
Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface
p:P304
wds:Q57784228-EDA0B49E-92CF-4A6D-AD02-CBF4AA9F9639
wdt:P304
31-43
p:P31
wds:Q57784228-CE1CE6E7-44ED-4C79-9528-ED9D105BC6C3
wdt:P31
wd:Q13442814
p:P921
wds:Q57784228-C2F9E59D-AFC8-4D2D-892B-1FF7F624953E wds:Q57784228-46DD675D-2341-4830-89BF-1FA9FA5D90C6
wdt:P921
wd:Q22907664 wd:Q155640
p:P698
wds:Q57784228-065C441E-3299-4BE5-B026-5979051B98F9
wdtn:P698
n9:30027175
wdt:P698
30027175
p:P1433
wds:Q57784228-8963C588-57AE-490F-B097-62B584F0EFC8
wdt:P1433
wd:Q385884
p:P433
wds:Q57784228-ADF92387-2335-482D-81C4-A8841FC721CC
p:P478
wds:Q57784228-74082BC0-8EA0-4E95-9BC6-9E2AD59B2AC8
wdt:P433
0
wdt:P478
211
p:P356
wds:Q57784228-EE0C4C1B-5A24-492A-86E9-5E4DC49C5CF3
wdtn:P356
n11:C8FD00055G
wdt:P356
10.1039/C8FD00055G
p:P818
wds:Q57784228-37F682F1-67DB-4D20-B8D5-19219ED2D956
wdt:P818
1802.03107