This HTML5 document contains 52 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n9http://dx.doi.org/10.3390/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q57528925
rdf:type
wikibase:Item
schema:description
im Februar 2017 veröffentlichter wissenschaftlicher Artikel wetenschappelijk artikel scholarly article by Francesco Granata et al published 9 February 2017 in Water наукова стаття, опублікована в лютому 2017
p:P577
wds:Q57528925-CC11E7C4-9886-43A1-9EE3-F574FDCD927A
wdt:P577
2017-02-09T00:00:00Z
p:P2860
wds:Q57528925-6B5A054F-9361-4EB4-BCED-2D7CB44755F3 wds:Q57528925-81881674-3BA8-41FE-BA06-5EE47C544E5D
wdt:P2860
wd:Q57531661 wd:Q39701755
p:P2093
wds:Q57528925-CF2FD6DA-3AC4-444B-A3DC-C189C9FD33F7 wds:Q57528925-90E1D218-B774-4E3B-8320-FA314059F155
wdt:P2093
Giovanni Esposito Rudy Gargano
rdfs:label
Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators
skos:prefLabel
Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators
schema:name
Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators
p:P50
wds:Q57528925-6B653DD9-C6C7-4A46-B39E-9E3D6E22A71E wds:Q57528925-CD72CE82-9E9F-43A8-B17D-C613ED8676CC wds:Q57528925-D78EF73A-B0DD-46A5-825C-DEC6A61FBD73
wdt:P50
wd:Q60663118 wd:Q60663109 wd:Q59188445
p:P1476
wds:Q57528925-A3F60840-87AA-4DD6-9FE1-D160C6A93DB0
wdt:P1476
Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators
p:P304
wds:Q57528925-B997F5E5-493A-48BB-B08D-E46DC38280CE
wdt:P304
105
p:P31
wds:Q57528925-339CFA8C-255F-4F05-BAA4-9F953437FF5E
wdt:P31
wd:Q13442814
p:P921
wds:Q57528925-5B27E816-F158-4A9C-9A8F-25853EDD0880 wds:Q57528925-995F5DF7-41A9-4416-A8D5-2133CB540A13 wds:Q57528925-C8ABB15F-4CE9-49DB-9502-E7EBAE873EB8
wdt:P921
wd:Q2539 wd:Q8366 wd:Q336191
p:P1433
wds:Q57528925-A94EED54-0ED6-459B-AF93-99CB04F9E90E
wdt:P1433
wd:Q15816677
p:P433
wds:Q57528925-A15CA6DE-F8EB-44E9-BAA1-19A6EC75D17B
p:P478
wds:Q57528925-E7E75B56-2299-4988-AEF2-57A0B2AA5EF8
wdt:P433
2
wdt:P478
9
p:P356
wds:Q57528925-57091A8B-6F57-4F35-B743-DBCDD5D91A8B
wdtn:P356
n9:W9020105
wdt:P356
10.3390/W9020105
p:P275
wds:Q57528925-dc96f75d-7047-499d-8a40-959c9391a610
p:P6216
wds:Q57528925-2ebf3566-57ed-48fc-8a00-ed829d0ede9d
wdt:P275
wd:Q20007257
wdt:P6216
wd:Q50423863