This HTML5 document contains 152 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
n13http://dx.doi.org/10.1186/
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n7https://dblp.org/rec/journals/midm/
n9http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
n11https://scigraph.springernature.com/pub.10.1186/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q47107061
rdf:type
wikibase:Item
schema:description
vedecký článok videnskabelig artikel 2017年學術文章 artykuł naukowy научна статия 2017年学术文章 2017年學術文章 artículu científicu artigo científico наукова стаття, опублікована в грудні 2017 2017年学术文章 scienca artikolo scientific article published on 19 December 2017 wissenschaftlicher Artikel article científic vitskapeleg artikkel 2017年の論文 επιστημονικό άρθρο научни чланак scientific article published on 19 December 2017 мақолаи илмӣ article scientifique artikulong pang-agham article scientific 2017年学术文章 articol științific 2017年学术文章 научная статья 2017年学术文章 2017年學術文章 bilimsel makale artigo científico wetenschappelijk artikel artículo científico publicado en 2017 vitenskapelig artikkel מאמר מדעי 2017年學術文章 naučni članak vědecký článek bài báo khoa học научни чланак vetenskaplig artikel tieteellinen artikkeli tudományos cikk บทความทางวิทยาศาสตร์ 2017年學術文章 სამეცნიერო სტატია teaduslik artikkel artigo científico artikel ilmiah 2017年学术文章 2017 nî lūn-bûn مقالة علمية نشرت في 19 ديسمبر 2017 2017년 논문 ১৯ ডিসেম্বর ২০১৭-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ articolo scientifico scientific article published on 19 December 2017 artikull shkencor
p:P577
wds:Q47107061-7E5FC75B-6F4D-4130-9147-AC56C56984BF
wdt:P577
2017-12-19T00:00:00Z
p:P2888
wds:Q47107061-837E1D2C-A59F-46EF-9BE8-5B52A1D01BF0
wdt:P2888
n11:s12911-017-0566-6
p:P2860
wds:Q47107061-1C299819-DC17-4600-97E7-44AD67AFFBA8 wds:Q47107061-38FD3686-C81C-4F77-BEBD-BCB35FCC5C51 wds:Q47107061-01D1F9C2-D9B3-4804-804B-3E854706886D wds:Q47107061-074724AE-7198-4776-90BD-46E5CB4A279E wds:Q47107061-E5FF955A-4858-4777-99EC-E2A7BEEB5250 wds:Q47107061-E8BD14CE-CCD3-4BE0-BD86-367B2FCE1730 wds:Q47107061-C95601E5-5AC5-4E80-AAC6-FF22ED9A6558 wds:Q47107061-D305BFF6-FB21-4342-A632-13891221DADA wds:Q47107061-D6126A52-BA30-4500-98F1-F7A6D2F2256E wds:Q47107061-DBA35644-0FE0-4879-9CA7-668EA6807BB1 wds:Q47107061-DF0E2E25-A4FC-4934-8F74-A4A3CC46ACD8 wds:Q47107061-9AA07BB6-79B9-4D94-B0C0-337DC1798D12 wds:Q47107061-9CAA8332-544C-4929-B9A9-B0F93CCB5ED8 wds:Q47107061-9E8902C2-CEC7-4A19-B8B4-7BB32F8CA93E wds:Q47107061-60A12B2D-330F-4451-9893-8451D8A2CBFD wds:Q47107061-6DEBA154-E716-48E8-8CFA-F06CBAB93ACF wds:Q47107061-7D488C44-6DBF-491C-BB52-B16654DF6ACC wds:Q47107061-807E8B46-2B5A-44F8-94ED-86B383C0C36A wds:Q47107061-81EA32F2-009C-4935-A494-205069DA1B37
wdt:P2860
wd:Q45962896 wd:Q44737182 wd:Q39014947 wd:Q54052245 wd:Q29547182 wd:Q33546840 wd:Q45959719 wd:Q30587090 wd:Q39029965 wd:Q52267910 wd:Q31032703 wd:Q43437465 wd:Q54352833 wd:Q30244996 wd:Q22673963 wd:Q57865479 wd:Q56221737 wd:Q35115008 wd:Q36242749
p:P2093
wds:Q47107061-C1ACBD9E-FB5D-46E3-8656-1697D919F0B0 wds:Q47107061-87C5C7DF-F474-4829-8488-A16C8188C8BC wds:Q47107061-FA18C32F-7396-4302-BA1A-84A4922963C8 wds:Q47107061-CCA5A6E8-C161-4E78-A73B-474EA4DB7372 wds:Q47107061-C1D0294A-5F68-4E76-8881-E213F6DDB018
wdt:P2093
Steven J Keteyian Waqas T Qureshi Radwa Elshawi Clinton A Brawner Amjad M Ahmed
rdfs:label
Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project.
skos:prefLabel
Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project.
schema:name
Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project.
p:P50
wds:Q47107061-D2704C46-FDBC-43E3-930A-5905390A2536 wds:Q47107061-41E7410D-FB6B-4889-B93B-13179B43F32D wds:Q47107061-384C9DA2-E39E-48A8-BF10-DFF24B40B681
wdt:P50
wd:Q37828820 wd:Q88645300 wd:Q58711644
p:P1476
wds:Q47107061-FBA01BD1-E828-4ECF-8EAC-8EFDD598BE05
wdt:P1476
Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project.
p:P304
wds:Q47107061-4AE00B28-5642-482C-8DB5-40E03B3DAFBF
wdt:P304
174
p:P31
wds:Q47107061-F7924A86-734D-4858-B05D-FDFD483CBF84
wdt:P31
wd:Q13442814
p:P921
wds:Q47107061-45D97026-AB0C-43C8-9400-28962F144DB3
wdt:P921
wd:Q2539
p:P698
wds:Q47107061-B5068B71-F5F8-46EE-9B3C-B7BD89E7C692
wdtn:P698
n9:29258510
wdt:P698
29258510
p:P8978
wds:Q47107061-5710F96F-0DA6-4F07-ABC7-69E3556B4EF0
wdtn:P8978
n7:SakrSAQBKBA17
wdt:P8978
journals/midm/SakrSAQBKBA17
p:P1433
wds:Q47107061-1B8DA834-1233-4B0F-A818-27F685E038DF
wdt:P1433
wd:Q15757608
p:P433
wds:Q47107061-F0885F85-391B-4CB8-91C6-0C0D14B1BB09
p:P478
wds:Q47107061-97021DA7-45AC-4155-B7C4-B5C3CE80D65E
wdt:P433
1
wdt:P478
17
p:P356
wds:Q47107061-E88D43F3-454B-47CA-9280-4315E07CCF57
wdtn:P356
n13:S12911-017-0566-6
wdt:P356
10.1186/S12911-017-0566-6
p:P4510
wds:Q47107061-DF2FF438-AC0B-44BC-8800-07BBD0D57FD3
wdt:P4510
wd:Q182505
p:P6179
wds:Q47107061-978467C4-2299-4F1C-A12D-3AEE8FCE26F9
wdt:P6179
1099716659
p:P932
wds:Q47107061-9FC2A1A5-BE26-4B55-A8E5-EEA7BBC1205F
wdt:P932
5735871