This HTML5 document contains 191 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
n9http://dx.doi.org/10.1002/
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q45948958
rdf:type
wikibase:Item
schema:description
2017年学术文章 artikel ilmiah bài báo khoa học artikulong pang-agham ১৩ জানুয়ারি ২০১৭-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ мақолаи илмӣ artigo científico научни чланак 2017年學術文章 bilimsel makale vetenskaplig artikel videnskabelig artikel научни чланак 2017年學術文章 vedecký článok artykuł naukowy scientific article published on 13 January 2017 научна статия სამეცნიერო სტატია teaduslik artikkel article scientific artigo científico wissenschaftlicher Artikel articolo scientifico מאמר מדעי tudományos cikk 2017年の論文 scienca artikolo scientific article published on 13 January 2017 articol științific 2017年学术文章 article scientifique artigo científico επιστημονικό άρθρο scientific article published on 13 January 2017 vitenskapelig artikkel บทความทางวิทยาศาสตร์ wetenschappelijk artikel artikull shkencor научная статья 2017년 논문 vitskapeleg artikkel tieteellinen artikkeli 2017年学术文章 مقالة علمية نشرت في 13 يناير 2017 2017年学术文章 artículu científicu 2017年学术文章 article científic 2017年學術文章 2017年学术文章 vědecký článek artículo científico publicado en 2017 2017年學術文章 2017年學術文章 naučni članak наукова стаття, опублікована в січні 2017 2017 nî lūn-bûn
p:P577
wds:Q45948958-C683D8EE-6A6F-4240-BD8E-5F67B2AEF126
wdt:P577
2017-03-23T00:00:00Z
p:P2860
wds:Q45948958-A21CFAEB-28E8-4F6F-B402-B4C0CEC9DDD6 wds:Q45948958-A6256760-CD11-49FE-8C36-442DA892DA8A wds:Q45948958-BE334156-846C-4945-8A2D-2057897254F2 wds:Q45948958-C2252AC6-DB84-449F-93A4-25DDAFCACB91 wds:Q45948958-A01D5E80-54F5-493F-832C-8BE40657E683 wds:Q45948958-A03AB772-D1BE-4595-99AD-0CCEA53F2D2F wds:Q45948958-D875B646-40A6-4047-98FA-419E381839E1 wds:Q45948958-D9FA0B3E-DA88-48F6-9D1E-6C7B7D85F982 wds:Q45948958-C43DFF92-4FB5-4CF5-AB3F-AB3F64832F2A wds:Q45948958-C4B0DF17-C6AC-4B0C-8929-D0672D592ED8 wds:Q45948958-C56C403A-A984-45FF-8D8B-EE83D5CDCA3D wds:Q45948958-802709CE-47BF-4543-AD37-D46B45BDEF0B wds:Q45948958-83AF2C91-D6EF-4E67-A255-482818A7EF5F wds:Q45948958-5CD62463-E9EC-483E-9B71-134A7EC4CBA5 wds:Q45948958-6DE46656-FA55-4694-ADF7-FFCC2A8F5A2D wds:Q45948958-70F6CC58-6C29-4A0A-A9CA-66705E44E1A0 wds:Q45948958-72270550-C7A9-4047-B235-05FE650A5971 wds:Q45948958-93358618-C89C-40F6-9E84-B458FDF830BF wds:Q45948958-94111A60-B989-4BFB-ADDE-48CD468F8F3B wds:Q45948958-87A1E404-0F01-4CF3-AE5B-E6E61A79F855 wds:Q45948958-8ADA034E-CC58-4F1D-97CE-BF567AEE2853 wds:Q45948958-8EC7B3C5-B908-4206-9401-961A8987AA80 wds:Q45948958-F463FB41-E95B-4B78-A2F2-F5D92A83382F wds:Q45948958-FA7754C4-EB19-4021-B2EC-0D9F7F546E0A wds:Q45948958-E80FAB5B-DA4E-4B5F-86A2-589429596D0C wds:Q45948958-ED45E0EE-6554-461F-97B1-E4851C05878E wds:Q45948958-EF622F90-FB43-4F2B-A87E-77345F422A66 wds:Q45948958-FC35C82C-9054-4478-B327-D17E95043B52 wds:Q45948958-23323488-87D6-421C-A834-6DD73EDFDD84 wds:Q45948958-2D2F868C-C877-4D98-86F0-835B78ABC3E6 wds:Q45948958-18DF7E05-B04C-4D82-999C-E0E8D97023F1 wds:Q45948958-1D6438E5-C4E8-477A-AC75-6F5F71762006 wds:Q45948958-1D69D7C8-2B98-47BF-9E71-3D71DC7A829B wds:Q45948958-4E72D826-C24E-44C3-B03E-113B80290956 wds:Q45948958-57CAB12F-98A3-446D-B85B-7D1D1D56A5C8 wds:Q45948958-5892C539-4A3F-43BD-9225-297E80BDC869 wds:Q45948958-397370A6-3421-4F19-93EB-CAA2128678BC wds:Q45948958-460466D4-432F-452A-A065-423D9E79CC0D wds:Q45948958-4DEFE996-07E9-44C1-B2A5-C113952FE87A wds:Q45948958-03529BA7-95E2-4A8B-8AC7-D0B9FBC29575 wds:Q45948958-07EEA2E7-C457-4B44-AC9E-2255A62ABAEE
wdt:P2860
wd:Q62489510 wd:Q48712206 wd:Q29614927 wd:Q34225973 wd:Q35848326 wd:Q37151273 wd:Q38119958 wd:Q41795352 wd:Q36782372 wd:Q36079781 wd:Q29620150 wd:Q24647960 wd:Q68142897 wd:Q36392376 wd:Q33319665 wd:Q48571448 wd:Q43083951 wd:Q48947963 wd:Q36081691 wd:Q51779987 wd:Q37068119 wd:Q51924691 wd:Q26828429 wd:Q30649670 wd:Q46133657 wd:Q35060854 wd:Q37081437 wd:Q67752557 wd:Q47722623 wd:Q53652403 wd:Q37397962 wd:Q35810207 wd:Q34052108 wd:Q34624869 wd:Q39608425 wd:Q37219431 wd:Q41795259 wd:Q62601736 wd:Q31157327 wd:Q33930002 wd:Q39462516
p:P2093
wds:Q45948958-9449D64D-4A88-453D-889D-1497B192C523 wds:Q45948958-9A0F1E92-E6C7-4E5C-B249-F8519DA8AA9A wds:Q45948958-E0041276-418A-4EFC-BBBF-A76357EF0948 wds:Q45948958-2AE50CF7-C97D-4515-952F-D25113B56CD9 wds:Q45948958-58744D5A-70EF-426D-A878-188EB7829F5E wds:Q45948958-E787F01E-0A58-4668-BD7C-9F2004E6BAA8 wds:Q45948958-7F3CE889-E438-438F-B456-1CAA0A2BEB68
wdt:P2093
Kenneth L Urish Ilya G Goldberg Christopher E Coletta Beth G Ashinsky Richard G Spencer Mustapha Bouhrara Benoit Lehallier
rdfs:label
Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative.
skos:prefLabel
Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative.
schema:name
Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative.
p:P50
wds:Q45948958-E373247F-5246-47B3-8E0B-6C7B3AF15E26
wdt:P50
wd:Q51877432
p:P1476
wds:Q45948958-88B0318C-808F-47E6-9E6E-3747D0BCD3C3
wdt:P1476
Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative
p:P304
wds:Q45948958-132E2526-8ECA-428C-98CB-E4C699CEA145
wdt:P304
2243-2250
p:P31
wds:Q45948958-313B98B5-61F0-4D7D-BFE5-5FBF98963A56
wdt:P31
wd:Q13442814
p:P921
wds:Q45948958-064CCA8F-2FFA-47D7-B5B8-76A29125D554 wds:Q45948958-F130AE36-F1D4-43F9-A65C-E7D090140221
wdt:P921
wd:Q62736 wd:Q2539
p:P698
wds:Q45948958-92B4A820-C82B-4524-B4A2-237921AA9517
wdtn:P698
n11:28084653
wdt:P698
28084653
p:P1433
wds:Q45948958-353039F1-E8DE-41E1-9994-093ADEE1D07B
wdt:P1433
wd:Q6295700
p:P433
wds:Q45948958-7DD85773-990C-464B-AE6F-83222A46B34D
p:P478
wds:Q45948958-FBDA2F1E-0B34-4541-88A0-88F7DC3F436D
wdt:P433
10
wdt:P478
35
p:P356
wds:Q45948958-EFC3C3F2-DAA8-4879-B0CD-452026AAB048
wdtn:P356
n9:JOR.23519
wdt:P356
10.1002/JOR.23519
p:P4510
wds:Q45948958-1FCAEC47-97C8-4A5C-95B4-9EFB292EE886
wdt:P4510
wd:Q2539
p:P932
wds:Q45948958-A1231B37-3B1D-457C-9121-69D3205F23B2
wdt:P932
5969573