This HTML5 document contains 107 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n11http://dx.doi.org/10.1016/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
phttp://www.wikidata.org/prop/
n13https://dblp.org/rec/journals/mia/
wikibasehttp://wikiba.se/ontology#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n12http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q39967128
rdf:type
wikibase:Item
schema:description
2016年學術文章 articol științific مقالة علمية نشرت بتاريخ 6-2-2016 мақолаи илмӣ vitskapeleg artikkel מאמר מדעי επιστημονικό άρθρο artículo científico publicado en 2016 научная статья наукова стаття, опублікована в лютому 2016 2016 nî lūn-bûn 2016年学术文章 article scientifique (publié 2016) artigo científico (publicado na 2016) tudományos cikk tieteellinen artikkeli bài báo khoa học wetenschappelijk artikel bilimsel makale 2016年學術文章 2016年学术文章 artigo científico научни чланак artikull shkencor vedecký článok artykuł naukowy ২০১৬-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ videnskabelig artikel (udgivet 2016) article científic 2016年學術文章 vědecký článek 2016年学术文章 2016年学术文章 artículu científicu espublizáu en 2016 articolo scientifico teaduslik artikkel 2016年の論文 mokslinis straipsnis artigo científico (publicado na 2016) scienca artikolo 2016年學術文章 مقالهٔ علمی vitenskapelig artikkel سائنسی مضمون 2016년 논문 article scientific artikulong pang-agham บทความทางวิทยาศาสตร์ научна статия naučni članak научни чланак სამეცნიერო სტატია scientific article գիտական հոդված wissenschaftlicher Artikel vetenskaplig artikel 2016年學術文章 2016年學術文章 мақолаи илмӣ 2016年学术文章
p:P577
wds:Q39967128-E00960D1-F352-421B-95AB-700DE64990C3
wdt:P577
2016-02-06T00:00:00Z
p:P407
wds:Q39967128-743A457E-072B-4E64-A750-06AD47EFD954
wdt:P407
wd:Q1860
p:P2093
wds:Q39967128-232695D6-52A3-414D-A0CC-142638F11E9B wds:Q39967128-463BD9EB-D7E7-4BCA-88F0-5597A6CAEDEA
wdt:P2093
M R Avendi Hamid Jafarkhani
rdfs:label
A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.
skos:prefLabel
A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.
schema:name
A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.
p:P50
wds:Q39967128-90793FAB-EC41-4184-AF4E-1C3B23445C5E
wdt:P50
wd:Q40410940
p:P1476
wds:Q39967128-30089C34-1B53-4749-91B8-D277BF5A2B58
wdt:P1476
A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
p:P304
wds:Q39967128-57FBEE4C-52D3-4A0A-8892-51E9CAE071D7
wdt:P304
108-119
p:P31
wds:Q39967128-34B14C4D-8CD8-4927-AF8B-49115BD630F0
wdt:P31
wd:Q13442814
p:P921
wds:Q39967128-2EEB9481-A62C-403C-B8C3-809E0949DC3C wds:Q39967128-2625F384-EBAC-4D70-8C1F-6F27B4943CEE wds:Q39967128-E54C3B8B-BE35-4057-8D85-799262C427AF
wdt:P921
wd:Q184199 wd:Q197536 wd:Q161238
p:P698
wds:Q39967128-737C762C-4143-44A9-8132-B27AB2969416
wdtn:P698
n12:26917105
wdt:P698
26917105
p:P8978
wds:Q39967128-E5BFFE15-7DC3-49D1-B122-875AB26B4476
wdtn:P8978
n13:AvendiKJ16
wdt:P8978
journals/mia/AvendiKJ16
p:P1433
wds:Q39967128-7BEA384A-8018-4ED1-B84A-1802CA156C8B
wdt:P1433
wd:Q15761131
p:P478
wds:Q39967128-E43BBDC8-2000-4C6F-A9B6-E8B851ABF3C5
wdt:P478
30
p:P356
wds:Q39967128-34599EE1-3764-4C9F-BF53-0C51045C208C
wdtn:P356
n11:J.MEDIA.2016.01.005
wdt:P356
10.1016/J.MEDIA.2016.01.005
p:P818
wds:Q39967128-8F6234DA-7EB5-4B1F-A241-007E0E0B56C9
wdt:P818
1512.07951