This HTML5 document contains 127 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
n10http://dx.doi.org/10.1080/
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n8http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q39043095
rdf:type
wikibase:Item
schema:description
scienca artikolo artykuł naukowy บทความทางวิทยาศาสตร์ videnskabelig artikel 2017年论文 wissenschaftlicher Artikel article científic wetenschappelijk artikel articolo scientifico 2017年論文 artikel ilmiah 2017年论文 scientific article published on 3 January 2017 vitskapeleg artikkel naučni članak tudományos cikk artikull shkencor 2017年論文 научни чланак наукова стаття, опублікована в січні 2017 სამეცნიერო სტატია artigo científico tieteellinen artikkeli 2017 nî lūn-bûn научная статья מאמר מדעי artículo científico publicado en 2017 2017년 논문 مقالة علمية نشرت في 3 يناير 2017 2017年论文 scientific article published on 3 January 2017 επιστημονικό άρθρο 2017年論文 artículu científicu espublizáu en 2017 artigo científico vetenskaplig artikel 2017年論文 научни чланак vedecký článok научна статия ৩ জানুয়ারি ২০১৭-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ vědecký článek bài báo khoa học мақолаи илмӣ 2017年论文 articol științific article scientifique teaduslik artikkel 2017年论文 2017年论文 scientific article published on 3 January 2017 bilimsel makale artikulong pang-agham 2017年論文 article scientific vitenskapelig artikkel artigo científico 2017年の論文 2017 թվականի հունվարի 3-ին հրատարակված գիտական հոդված
p:P577
wds:Q39043095-410E68EC-73D6-48BE-B405-027BCBC70818
wdt:P577
2017-01-03T00:00:00Z
p:P2860
wds:Q39043095-3C8968DE-75F4-4057-B6C9-F0ABB5DF86B1 wds:Q39043095-47005705-E9D7-4662-8747-2AB5D6562213 wds:Q39043095-2D638BA2-285F-4224-8683-98566C730C50 wds:Q39043095-7F2C3A8D-FE0F-408E-89D2-E273E3D990AB wds:Q39043095-82AFA73F-664C-49F9-947B-D8381BFD7516 wds:Q39043095-4913343E-68C0-4287-9195-11EA5FA9F53F wds:Q39043095-6445D32D-DE15-4ADF-8D1E-3704DA8340D4 wds:Q39043095-CBFB0A8E-FA4C-4DF4-8D9A-A08B70E99FFD wds:Q39043095-9DEDD5F1-BAF2-4D5A-A0EA-80610F40AD73 wds:Q39043095-9E636A6A-3913-4DF1-9219-BEF97E0CD04C wds:Q39043095-C4A3C764-AC00-420B-8EFE-835B83AE945F wds:Q39043095-E0320736-8ACA-4FB4-9F3C-8F8B03819DAF wds:Q39043095-F036D11B-1AA3-4F6B-AC72-3DF08AF216CC
wdt:P2860
wd:Q52262271 wd:Q47780262 wd:Q43325646 wd:Q43214789 wd:Q56270547 wd:Q56747283 wd:Q51091778 wd:Q29999676 wd:Q40423686 wd:Q56522471 wd:Q57358896 wd:Q28292295 wd:Q43336363
p:P2093
wds:Q39043095-C73CD4AC-0988-42BB-A194-94D9F94C0F4C wds:Q39043095-CB2348E3-1B5E-4611-8D8C-9C008B4B23D9 wds:Q39043095-1243F283-6403-4A9C-9449-E237BA171B66 wds:Q39043095-80C30D31-AA00-4A85-AEE3-35A7E8992D8B wds:Q39043095-7EEBF78E-C3E7-4FE0-876E-2CFF61409ACF
wdt:P2093
Oberon Bolouri Alireza Moosavi Zenooz Reza Ranjbar Farzin Zokaee Ashtiani Fatemeh Nikbakht
rdfs:label
Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation
skos:prefLabel
Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation
schema:name
Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation
p:P1476
wds:Q39043095-EB4C1F62-9FDC-455B-ABA1-302C79044463
wdt:P1476
Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation
p:P304
wds:Q39043095-D319CB12-466B-4284-86FB-5B30DB6B519C
wdt:P304
570-577
p:P31
wds:Q39043095-4773A9F4-953C-4CAC-B72B-6455F498A881
wdt:P31
wd:Q13442814
p:P921
wds:Q39043095-673C0747-D7EB-42CD-8FA3-08A76C662004
wdt:P921
wd:Q192776
p:P698
wds:Q39043095-8C473739-7632-4CC6-A2D2-311448A17993
wdtn:P698
n8:28045608
wdt:P698
28045608
p:P1433
wds:Q39043095-E64FEA0E-71F8-4750-B7CE-7FA600CAA981
wdt:P1433
wd:Q15753409
p:P433
wds:Q39043095-75004328-E029-4834-910A-5C436D090FE4
p:P478
wds:Q39043095-37ACAFF0-07F9-43CB-9B20-8516F238D8C8
wdt:P433
6
wdt:P478
47
p:P356
wds:Q39043095-1A84009D-EE6B-4272-AC94-43E1E62210B0
wdtn:P356
n10:10826068.2016.1275013
wdt:P356
10.1080/10826068.2016.1275013