This HTML5 document contains 207 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
n8http://dx.doi.org/10.1093/BIOINFORMATICS/
n12https://dblp.org/rec/journals/bioinformatics/
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n13http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q38825074
rdf:type
wikibase:Item
schema:description
scienca artikolo სამეცნიერო სტატია article científic vitskapeleg artikkel 2016年论文 мақолаи илмӣ مقالة علمية نشرت في سبتمبر 2016 scientific article published on September 2016 bilimsel makale บทความทางวิทยาศาสตร์ 2016年论文 wetenschappelijk artikel מאמר מדעי vitenskapelig artikkel tieteellinen artikkeli articol științific artigo científico bài báo khoa học artículu científicu espublizáu en 2016 2016年論文 artikull shkencor artículo científico publicado en 2016 articolo scientifico 2016 nî lūn-bûn teaduslik artikkel наукова стаття, опублікована у вересні 2016 artigo científico 2016年论文 2016年論文 научни чланак 2016年の論文 videnskabelig artikel সেপ্টেম্বর ২০১৬-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ 2016年论文 научна статия vetenskaplig artikel artikel ilmiah vedecký článok article scientifique επιστημονικό άρθρο vědecký článek 2016년 논문 scientific article published on September 2016 artykuł naukowy 2016年論文 scientific article published on September 2016 artikulong pang-agham article scientific 2016年论文 wissenschaftlicher Artikel tudományos cikk artigo científico 2016年論文 научни чланак naučni članak 2016年论文 научная статья 2016年論文
p:P577
wds:Q38825074-EC6D6519-18FC-4944-8FBA-8DDB579D0DD5
wdt:P577
2016-09-01T00:00:00Z
p:P407
wds:Q38825074-829C60F3-806B-4755-B74F-CBFC3F5C87F5
wdt:P407
wd:Q1860
p:P2860
wds:Q38825074-D1B89229-0736-40EB-87F7-86FDC76E7CB3 wds:Q38825074-D20FA74E-9947-4549-98E9-2D0380BB5DFF wds:Q38825074-D53EF4A8-E9A1-4E09-8E04-F2E72827AB2D wds:Q38825074-C78AB678-F072-49DC-8CD8-15722BE4BE60 wds:Q38825074-CE83E7CA-EAFC-4FE2-BB35-52C7842FB9CB wds:Q38825074-D1AE9FD1-270D-4284-A62B-B3E836170CB1 wds:Q38825074-E3A0A6BA-87F2-4D48-B19E-D9F7A92E54E5 wds:Q38825074-EE575710-A7F8-493C-9A13-9BC8F28140E8 wds:Q38825074-F9E67DCE-3063-49A0-8A18-05F974D758E2 wds:Q38825074-D5E7A2E6-F5EE-461B-A568-00BC2E5DCB4D wds:Q38825074-DA255D90-48A2-4DF1-A61F-DF87040E9B5B wds:Q38825074-E14BD8A4-147F-4813-98EB-7EC05C9C2CBD wds:Q38825074-FC768E19-7FFD-400F-9331-952C272CA87A wds:Q38825074-FD802D9D-F5ED-438B-A67C-1D535F4ED61A wds:Q38825074-FEFF5CBE-361C-414C-A29E-CBF05925938A wds:Q38825074-FFEA45FC-5716-458E-B0EB-C3AA3CF2917A wds:Q38825074-11D7D766-1602-462B-BDDE-880DE248F108 wds:Q38825074-1B46C2FF-6CD6-412E-AFFC-64EF43AAD433 wds:Q38825074-1BC0117D-015A-4149-8831-144B3627B694 wds:Q38825074-2127E4DB-D6F4-4D30-ABAF-C8535742CA13 wds:Q38825074-00D13D5E-D61E-4F19-A09C-D18D7401CBFA wds:Q38825074-084B3A6C-D3A2-4516-9B47-9598316A8479 wds:Q38825074-31093106-C0BA-4215-AEF9-9E37B5499A38 wds:Q38825074-347DEE28-5C77-48DD-B57C-9C6B9F1361AA wds:Q38825074-25B78024-74D8-4CBC-8262-BE3605239C28 wds:Q38825074-30F9F9FE-C8D6-4E66-B6C4-D97827D9C933 wds:Q38825074-3DBFD0AF-EB60-4D5C-BCF4-C47C2FBF9FCE wds:Q38825074-3E10FF19-52B6-49A4-87F9-BC0ACE6771D3 wds:Q38825074-45DBD196-578F-436F-B78B-8A792652E44B wds:Q38825074-3AE9E072-50B8-4836-A563-6A9C142B027F wds:Q38825074-3D075148-DFB4-47EA-81FB-6D34A24EE3D9 wds:Q38825074-5FF71A7B-07FF-4645-A23A-62E1E80D431A wds:Q38825074-6403EB97-D41E-49B3-84B8-3CE9CD02175A wds:Q38825074-645BE822-4DE8-4F87-81E3-5D94B11E9F18 wds:Q38825074-6C45E791-C9D3-4B51-BD70-CBF8BB3E4F3E wds:Q38825074-54D1542E-003D-44A2-8B49-1F9012B8D79C wds:Q38825074-55883B94-DEF9-4D5E-A2A8-52DE301EC7B4 wds:Q38825074-56A3D5EF-CDDC-4EE8-A960-43D2704F1A62 wds:Q38825074-5F33C5B5-FC84-4EBB-8660-5752250CEEE8 wds:Q38825074-847B97E8-5DAD-4DF5-BB73-0447A0841301 wds:Q38825074-8BCD8F6C-CB11-4A2D-A416-2D038FB2EA5A wds:Q38825074-9105BB9D-6572-42FC-A3CA-7CB50CB7A5C6 wds:Q38825074-6DD20299-5715-4739-94BD-512D38C678E5 wds:Q38825074-74F00FC7-3D87-4566-BB56-DB403AED7A8D wds:Q38825074-80BD7DC7-BF8B-43D4-A43E-CA2DAE3995DA wds:Q38825074-81728859-B067-4FBC-8F50-2380EA736507 wds:Q38825074-BA240E2F-4BD0-4ED0-978D-BD519FC1978B wds:Q38825074-BD339D94-C2EC-4B45-A00A-7BD973489ADB wds:Q38825074-BE23B949-8573-4DC1-8436-EA0799066A5A wds:Q38825074-9F6C9963-04E8-418D-B845-B0B2A84E9316 wds:Q38825074-9F8CEECB-B652-4BE5-9159-C0CBC6914C25
wdt:P2860
wd:Q37182064 wd:Q29616388 wd:Q29048205 wd:Q24618531 wd:Q27860747 wd:Q57311064 wd:Q34426417 wd:Q30456084 wd:Q44385437 wd:Q47715145 wd:Q42431942 wd:Q30377919 wd:Q33902242 wd:Q81522495 wd:Q34665088 wd:Q34425242 wd:Q35926725 wd:Q29615888 wd:Q36851710 wd:Q30387288 wd:Q30401404 wd:Q30378771 wd:Q21284325 wd:Q28292161 wd:Q30357086 wd:Q34546645 wd:Q48347994 wd:Q45965349 wd:Q29048164 wd:Q30383384 wd:Q24675789 wd:Q36926540 wd:Q30355144 wd:Q24620741 wd:Q38194194 wd:Q43241621 wd:Q24653665 wd:Q30353929 wd:Q30406461 wd:Q37549950 wd:Q30633989 wd:Q29547182 wd:Q34278790 wd:Q35133200 wd:Q77055722 wd:Q38094877 wd:Q56531312 wd:Q24545170 wd:Q30377015 wd:Q33772010 wd:Q47715178
p:P2093
wds:Q38825074-DBFC0F3A-7E2D-41B5-9C7D-A238D0B87544 wds:Q38825074-B3F41367-DF37-4D67-80C6-624713C2EBB4 wds:Q38825074-2604F8F9-3B36-4BD7-903D-75B16BB82E6C
wdt:P2093
Jinbo Xu Jianzhu Ma Sheng Wang
rdfs:label
AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields
skos:prefLabel
AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields
schema:name
AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields
p:P1476
wds:Q38825074-C871CBD8-8AE7-4647-A0BF-06F7D31F501F
wdt:P1476
AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields
p:P304
wds:Q38825074-06955FEB-7B67-400A-B1B1-4863B7F50268
wdt:P304
i672-i679
p:P31
wds:Q38825074-046E90FE-8163-44C0-9FFC-A4817AF0D956
wdt:P31
wd:Q13442814
p:P698
wds:Q38825074-3D4FF1C3-EB0E-4443-A534-6723F96452FA
wdtn:P698
n13:27587688
wdt:P698
27587688
p:P8978
wds:Q38825074-34DF8369-89E5-45A9-82AE-9E2842EBCEB5
wdtn:P8978
n12:WangMX16
wdt:P8978
journals/bioinformatics/WangMX16
p:P1433
wds:Q38825074-3B08C65F-7C03-4FAB-BCB9-46FAB51890F7
wdt:P1433
wd:Q4914910
p:P433
wds:Q38825074-383CF340-C254-4D08-AF3B-E41DF329C6C1
p:P478
wds:Q38825074-D3841F26-D9F2-4046-A53A-88D7CB0C515E
wdt:P433
17
wdt:P478
32
p:P356
wds:Q38825074-9BC42E9D-803A-4CE5-9FA1-EF5B67846BC2
wdtn:P356
n8:BTW446
wdt:P356
10.1093/BIOINFORMATICS/BTW446
p:P275
wds:Q38825074-2661d52b-1467-4aaa-9c1a-d7e163f2ad40
p:P6216
wds:Q38825074-401867f4-a92d-41e2-b60c-e24135c5ad55
wdt:P275
wd:Q34179348
wdt:P6216
wd:Q50423863
p:P932
wds:Q38825074-9E7A3E7F-E252-488B-9990-63A5922438D2
wdt:P932
5013916