This HTML5 document contains 94 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
skoshttp://www.w3.org/2004/02/skos/core#
phttp://www.wikidata.org/prop/
wikibasehttp://wikiba.se/ontology#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n12http://dx.doi.org/10.7196/
n11http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q38730689
rdf:type
wikibase:Item
schema:description
2017年论文 مقالة علمية نشرت في 24 مايو 2017 2017年論文 мақолаи илмӣ artikulong pang-agham teaduslik artikkel სამეცნიერო სტატია articol științific vitskapeleg artikkel научная статья 2017年论文 2017年论文 2017年論文 scientific article published on 24 May 2017 bilimsel makale artigo científico artículo científico publicado en 2017 wetenschappelijk artikel artículu científicu espublizáu en 2017 naučni članak artikel ilmiah bài báo khoa học vitenskapelig artikkel vetenskaplig artikel 2017년 논문 videnskabelig artikel 2017年論文 บทความทางวิทยาศาสตร์ 2017年论文 vědecký článek 2017 nî lūn-bûn tieteellinen artikkeli artigo científico articolo scientifico מאמר מדעי 2017年论文 scientific article published on 24 May 2017 tudományos cikk научни чланак 2017年論文 ২৪ মে ২০১৭-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ artykuł naukowy наукова стаття, опублікована в травні 2017 artikull shkencor article scientifique article científic научна статия article scientific 2017年論文 2017年论文 2017年の論文 scienca artikolo επιστημονικό άρθρο artigo científico wissenschaftlicher Artikel vedecký článok scientific article published on 24 May 2017 научни чланак
p:P577
wds:Q38730689-1931A15C-EC95-41C0-8D32-E1FBFF48D88F
wdt:P577
2017-05-24T00:00:00Z
p:P2093
wds:Q38730689-7BF49032-00CF-48D1-9EA4-D890B3AB9CA3 wds:Q38730689-DE6E4348-9DC3-405A-AC6A-3E6372267746
wdt:P2093
Lindi Marie Coetzee Deborah Kim Glencross
rdfs:label
Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support. Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support. Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support.
skos:prefLabel
Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support. Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support. Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support.
schema:name
Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support. Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support. Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support.
p:P50
wds:Q38730689-24A46263-4349-4B28-B4CB-2547A5B04F51
wdt:P50
wd:Q57879554
p:P1476
wds:Q38730689-E22EBCDA-3128-4DB4-9F5E-2CBC4D7727CD
wdt:P1476
Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support
p:P304
wds:Q38730689-9C24332C-844D-48CA-8661-C779AB88B009
wdt:P304
507-513
p:P31
wds:Q38730689-EB5AC1E3-BBB3-4CD9-B0C0-4520FC948CC5
wdt:P31
wd:Q13442814
p:P698
wds:Q38730689-3AEE5DDB-CE16-4257-837B-D5C38607E79E
wdtn:P698
n11:28604323
wdt:P698
28604323
p:P1433
wds:Q38730689-6F9F5F24-7290-43C4-A8B3-7132363E28C9
wdt:P1433
wd:Q7565732
p:P433
wds:Q38730689-C6AB40F2-106F-4D50-9E40-DE46628A475A
p:P478
wds:Q38730689-5D4050B8-5748-4B7B-A35C-3F9E0BA6507B
wdt:P433
6
wdt:P478
107
p:P356
wds:Q38730689-E7FB1BFA-72C3-4C0C-94BD-C78511B37B7A
wdtn:P356
n12:SAMJ.2017.V107I6.11311
wdt:P356
10.7196/SAMJ.2017.V107I6.11311