This HTML5 document contains 140 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n11http://dx.doi.org/10.1103/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n10http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q38377368
rdf:type
wikibase:Item
schema:description
2016年论文 tieteellinen artikkeli επιστημονικό άρθρο научная статья 2016年論文 naučni članak artigo científico scientific article published on 17 August 2016 บทความทางวิทยาศาสตร์ vědecký článek bài báo khoa học videnskabelig artikel مقالة علمية نشرت في 17 أغسطس 2016 artículu científicu espublizáu en 2016 2016年论文 artikull shkencor scientific article published on 17 August 2016 artykuł naukowy научни чланак 2016年論文 article científic 2016年论文 наукова стаття, опублікована в серпні 2016 vetenskaplig artikel বৈজ্ঞানিক নিবন্ধ 2016 nî lūn-bûn מאמר מדעי vitskapeleg artikkel artikel ilmiah scienca artikolo artigo científico wetenschappelijk artikel 2016年论文 articolo scientifico tudományos cikk artikulong pang-agham article scientific artículo científico wissenschaftlicher Artikel teaduslik artikkel мақолаи илмӣ научна статия article scientifique 2016年論文 2016年論文 2016年论文 2016年の論文 2016년 논문 სამეცნიერო სტატია scientific article published on 17 August 2016 научни чланак vitenskapelig artikkel bilimsel makale artigo científico vedecký článok 2016年論文 articol științific 2016年论文
p:P577
wds:Q38377368-4852E7FB-0A29-43F3-B645-F7D815556073
wdt:P577
2016-08-17T00:00:00Z
p:P407
wds:Q38377368-BD6DF35A-89C7-4F02-9BED-025905A50231
wdt:P407
wd:Q1860
p:P2860
wds:Q38377368-A965E11A-303B-42F6-98D8-F5D3AA8CC43D wds:Q38377368-94FEA8C1-A889-4E9D-992F-4648EF650E75 wds:Q38377368-D70AFBB5-FDA7-4023-81CA-6BA78312F00C wds:Q38377368-CC6AE9CC-C567-498E-8E7E-E76B9E5EF5FF wds:Q38377368-D1424745-5EAB-4926-908C-8C9A2F9F6F8F wds:Q38377368-0E05BEF3-2FB1-4739-9741-8397949E079C wds:Q38377368-2AD9D41D-842C-4381-B154-CB3EB278F154 wds:Q38377368-252A59A8-BECF-4023-A5B7-D1F9F8B795D8 wds:Q38377368-3AD82C12-06C2-4A6B-B835-898ADA47238A wds:Q38377368-4D5719AF-2BC2-4991-A021-92148E787570 wds:Q38377368-6C912B1A-88E8-4993-AA93-73F79B6AFC8B wds:Q38377368-805A7BE8-1864-4BF5-BD85-60049EA63C4C wds:Q38377368-5DDF8927-42B7-45FC-BA6E-D63E4DE99EA4 wds:Q38377368-6B555915-02E8-49F9-9B6F-278418A3A1AA wds:Q38377368-6B1EB9AC-D0AF-4632-902A-D2068FD85BA9 wds:Q38377368-AA3E088B-E2F2-4ECB-B920-0698955267CD wds:Q38377368-C5747A6B-36F8-4180-BA96-741238334A3A wds:Q38377368-C2418832-049E-499D-A319-1DC9EA06E4BB wds:Q38377368-9226666F-E85A-4697-8231-8BB327AC33F3
wdt:P2860
wd:Q34445269 wd:Q52032216 wd:Q27342530 wd:Q52071182 wd:Q57438550 wd:Q49902522 wd:Q50368941 wd:Q51708482 wd:Q57716651 wd:Q56486282 wd:Q45255272 wd:Q55951290 wd:Q59065646 wd:Q43448915 wd:Q59063297 wd:Q56486275 wd:Q50594491 wd:Q56094808 wd:Q56094813
p:P2093
wds:Q38377368-362E4046-FEBD-4E21-86B7-2CDBE6F4CF20 wds:Q38377368-7A91FB4B-CA17-4028-94AD-3065C41C4D08
wdt:P2093
Antoinette Tordesillas Guillermo A Narsilio
rdfs:label
Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability.
skos:prefLabel
Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability.
schema:name
Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability.
p:P50
wds:Q38377368-CE4FF431-EB65-4630-9979-D8FDF7DE51D9
wdt:P50
wd:Q88330282
p:P1476
wds:Q38377368-32273061-3F00-4031-8B83-2DFFA4A465A8
wdt:P1476
Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability
p:P304
wds:Q38377368-32299095-809D-4B43-A285-794739AF8F42
wdt:P304
022904
p:P31
wds:Q38377368-2EA1459C-2684-43EE-A7DD-E26D6E80F2A7
wdt:P31
wd:Q13442814
p:P921
wds:Q38377368-31215EDD-1F17-41E9-8E8A-592FFA43447F wds:Q38377368-88F8CB76-C400-42EF-96A9-C852EF6E96E9
wdt:P921
wd:Q2539 wd:Q665189
p:P698
wds:Q38377368-7E1BE7CE-119C-483A-AF16-34135677BB49
wdtn:P698
n10:27627377
wdt:P698
27627377
p:P1433
wds:Q38377368-51A0652E-37DC-43BC-992A-8B0C6D569CC8
wdt:P1433
wd:Q2128181
p:P433
wds:Q38377368-090F793B-3237-44D5-9AA6-78A335CF0AC5
p:P478
wds:Q38377368-D98EF44C-55CA-4CDE-BE4E-E7B31AA93148
wdt:P433
2-1
wdt:P478
94
p:P356
wds:Q38377368-19E65E70-58EB-4F82-9D6E-DF91AE6202C0
wdtn:P356
n11:PHYSREVE.94.022904
wdt:P356
10.1103/PHYSREVE.94.022904
p:P819
wds:Q38377368-D4D27F0B-6569-48CA-A017-0B111F4038D5
wdt:P819
2016PhRvE..94b2904V