This HTML5 document contains 180 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wdthttp://www.wikidata.org/prop/direct/
wdtnhttp://www.wikidata.org/prop/direct-normalized/
n12http://dx.doi.org/10.1371/
schemahttp://schema.org/
skoshttp://www.w3.org/2004/02/skos/core#
rdfshttp://www.w3.org/2000/01/rdf-schema#
wikibasehttp://wikiba.se/ontology#
phttp://www.wikidata.org/prop/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n11http://rdf.ncbi.nlm.nih.gov/pubchem/reference/
xsdhhttp://www.w3.org/2001/XMLSchema#
wdshttp://www.wikidata.org/entity/statement/
wdhttp://www.wikidata.org/entity/

Statements

Subject Item
wd:Q36334041
rdf:type
wikibase:Item
schema:description
2017년 논문 vitenskapelig artikkel գիտական հոդված bài báo khoa học 2017年学术文章 vetenskaplig artikel artykuł naukowy artikulong pang-agham tudományos cikk 2017年學術文章 vědecký článek scientific article 2017年學術文章 2017年学术文章 scienca artikolo 2017年学术文章 articol științific ২০১৭-এ প্রকাশিত বৈজ্ঞানিক নিবন্ধ artículu científicu espublizáu en 2017 mokslinis straipsnis научна статия 2017年學術文章 2017年學術文章 επιστημονικό άρθρο 2017年學術文章 научни чланак мақолаи илмӣ artigo científico article científic artigo científico (publicado na 2017) 2017年學術文章 2017年学术文章 2017 nî lūn-bûn مقالة علمية نشرت بتاريخ 4-4-2017 2017年学术文章 სამეცნიერო სტატია научни чланак bilimsel makale artículo científico publicado en 2017 artigo científico (publicado na 2017) บทความทางวิทยาศาสตร์ artikull shkencor videnskabelig artikel (udgivet 2017) wissenschaftlicher Artikel article scientific научная статья naučni članak teaduslik artikkel article publié dans la revue scientifique PLoS ONE tieteellinen artikkeli wetenschappelijk artikel מאמר מדעי vitskapeleg artikkel 2017年の論文 наукова стаття, опублікована у квітні 2017 vedecký článok articolo scientifico مقالهٔ علمی سائنسی مضمون мақолаи илмӣ
p:P577
wds:Q36334041-5708099C-F78D-4AEB-9E4B-6EBDF8C43717
wdt:P577
2017-04-04T00:00:00Z
p:P407
wds:Q36334041-ED668170-1F3A-4E31-8BB2-C82CBF19436C
wdt:P407
wd:Q1860
p:P2860
wds:Q36334041-A4D21D27-2BA6-466C-9A0D-2BF0D4C835F1 wds:Q36334041-AEF84A67-6348-479D-875B-55AF882757BE wds:Q36334041-9BCEC3DD-FD56-4DAC-B322-3FE8079CACA4 wds:Q36334041-9BE4CA8D-53D0-47E0-9D37-3898FBCE818E wds:Q36334041-A091BF62-B801-49E0-872F-A091AF00354E wds:Q36334041-A24F70FA-6458-4EDE-A5BE-3902343A50A2 wds:Q36334041-8CE86274-4D85-424B-9226-0405994C02D1 wds:Q36334041-97F7C55D-4275-472B-BDCA-88751EEDEFC1 wds:Q36334041-87FF31BE-3587-4275-960D-5C5CFA750AAF wds:Q36334041-5F567C6A-DF26-41FA-8B40-5EFDE1B6B851 wds:Q36334041-6422A13E-F280-4BDC-A3F4-CF5830DB858B wds:Q36334041-71F9370A-0320-4855-8D88-62D64B1ABD85 wds:Q36334041-7B627955-6997-4933-BA7F-1A51727E904F wds:Q36334041-5E470B99-AB8C-47BC-AB49-B6E0176E13C9 wds:Q36334041-2F872E66-A8D6-40D0-8B98-590784ACA111 wds:Q36334041-318E1940-EFBA-4BC2-ABE6-7A167E3E1F7C wds:Q36334041-460860B3-AD44-4798-BE52-D42A0AA027AA wds:Q36334041-4AAB04C8-8C28-4AAF-8941-A74B37ACB25D wds:Q36334041-16ED017C-A946-4BF4-85CE-D19AEFEF0DED wds:Q36334041-2B926D52-6B30-40FA-B4F1-454368611C04 wds:Q36334041-2DC39F29-F959-4D30-8F00-50A27CB94E67 wds:Q36334041-0A2E3ADF-B744-4160-9BA5-DD744EFCB6EC wds:Q36334041-F4FD1851-2EC2-48B0-8227-854F7E49057A wds:Q36334041-E66D2397-16AA-49E4-BA80-78AFD6F1285E wds:Q36334041-EB8777BF-B63C-4F9B-96A7-4948EFCE874A wds:Q36334041-E0349294-26FA-4C57-93EA-F857CEE56629 wds:Q36334041-E59A0D7F-F71A-468E-96A3-51E98C30BD5D wds:Q36334041-D5523C51-3E05-4D72-B149-31EB2681B08F wds:Q36334041-D7346E82-C276-4D9D-8DF9-3A26514053F3 wds:Q36334041-DDA8365A-5026-4AB0-BEDC-7A78813DC379 wds:Q36334041-B743DCAB-7589-44F9-91A5-0DFAE4B1FE2E wds:Q36334041-BB00996D-6F68-4E78-9AC9-24EB46A9BB8E wds:Q36334041-C3158359-5C0A-4F94-8AEC-FCC16FD27D27
wdt:P2860
wd:Q36147190 wd:Q57413870 wd:Q52024120 wd:Q57653889 wd:Q37659290 wd:Q29547752 wd:Q35582724 wd:Q28680747 wd:Q37945873 wd:Q35216751 wd:Q50459796 wd:Q33588222 wd:Q37223443 wd:Q51922378 wd:Q37269776 wd:Q46320309 wd:Q56925085 wd:Q36738148 wd:Q58283897 wd:Q36157802 wd:Q30583304 wd:Q38110710 wd:Q29614189 wd:Q35159804 wd:Q35773156 wd:Q37549848 wd:Q35992231 wd:Q40664994 wd:Q52306584 wd:Q115707260 wd:Q84967066 wd:Q39788351 wd:Q37021409
p:P2093
wds:Q36334041-A8D13C2F-859B-4ABE-AC3F-97F9F332EE84 wds:Q36334041-829ED150-A45A-48F4-A77A-4B03B77F877E
wdt:P2093
Jonathan M Garibaldi Jenna Reps
rdfs:label
Can machine-learning improve cardiovascular risk prediction using routine clinical data? Can machine-learning improve cardiovascular risk prediction using routine clinical data? Can machine-learning improve cardiovascular risk prediction using routine clinical data?
skos:prefLabel
Can machine-learning improve cardiovascular risk prediction using routine clinical data? Can machine-learning improve cardiovascular risk prediction using routine clinical data? Can machine-learning improve cardiovascular risk prediction using routine clinical data?
schema:name
Can machine-learning improve cardiovascular risk prediction using routine clinical data? Can machine-learning improve cardiovascular risk prediction using routine clinical data? Can machine-learning improve cardiovascular risk prediction using routine clinical data?
p:P50
wds:Q36334041-1CBEB1AF-66DA-4C05-B4FD-486626A0953E wds:Q36334041-93404EEC-5808-42E4-932E-7DF8FFED5088 wds:Q36334041-E5DE2A42-E32B-4D8F-94F1-7711BFA5425E
wdt:P50
wd:Q57027046 wd:Q58610075 wd:Q40731118
p:P1476
wds:Q36334041-1074718C-0150-45F1-A9DD-82E137ED03B7
wdt:P1476
Can machine-learning improve cardiovascular risk prediction using routine clinical data?
p:P304
wds:Q36334041-ECD635C3-DC80-4567-A9F7-DB603D7E632E
wdt:P304
e0174944
p:P31
wds:Q36334041-F043D832-D90D-4547-953F-2B45384DA74C
wdt:P31
wd:Q13442814
p:P921
wds:Q36334041-4F9B9E9E-6D46-4952-A38B-6BC405C7709A
wdt:P921
wd:Q2539
p:P698
wds:Q36334041-DEE51B33-092B-4450-9778-83D9917CB706
wdtn:P698
n11:28376093
wdt:P698
28376093
p:P1433
wds:Q36334041-CD78D862-F744-411E-9FDB-16026C4E4910
wdt:P1433
wd:Q564954
p:P433
wds:Q36334041-AC199C58-EC60-4C04-A85E-47C38DE1DAFF
p:P478
wds:Q36334041-E430D12C-62D0-414C-869F-F5ABB2F58563
wdt:P433
4
wdt:P478
12
p:P356
wds:Q36334041-150E4E62-9373-4F91-BB06-B6AF84A2E2DB
wdtn:P356
n12:JOURNAL.PONE.0174944
wdt:P356
10.1371/JOURNAL.PONE.0174944
p:P275
wds:Q36334041-d5e372ca-c014-4402-9a79-ed1f43d43986
p:P6216
wds:Q36334041-920f7818-3d20-48a3-8500-20bd46aa66ad
wdt:P275
wd:Q20007257
wdt:P6216
wd:Q50423863
p:P819
wds:Q36334041-807D8B7A-B0D7-40DB-B9F5-DE69756B8644
wdt:P819
2017PLoSO..1274944W
p:P4510
wds:Q36334041-8989C955-3D27-44AF-81E4-AE84ACFEA046
wdt:P4510
wd:Q4798119
p:P932
wds:Q36334041-582FDB2A-263F-4BCE-B6B3-5D9786998672
wdt:P932
5380334