About: CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : wikibase:Item, within Data Space : wikidata.demo.openlinksw.com associated with source document(s)

scientific article published on 27 April 2020

AttributesValues
rdf:type
description
  • wetenschappelijk artikel (nl)
  • article scientifique publié en 2020 (fr)
  • artículu científicu espublizáu n'abril de 2020 (ast)
  • im April 2020 veröffentlichter wissenschaftlicher Artikel (de)
  • scientific article published on 27 April 2020 (en)
  • գիտական հոդված հրատարակված 2020 թվականի ապրիլի 27-ին (hy)
  • наукова стаття, опублікована 27 квітня 2020 (uk)
publication date
publication date
cites work
cites work
author name string
author name string
  • Lin Wang
  • Xue Mei
  • Jing Shi
  • Qi Zhang
  • Zhiyong Zhang
  • Lei Shi
  • Hongzhou Lu
  • Chao Huang
  • Tongyu Zhu
  • Fei Shan
  • Yuxin Shi
  • Cong Fang
  • Nannan Shi
  • Fengjun Liu
  • Xiaoming Su
  • Zhongcheng Yang
  • Fengxiang Song
  • Chunzi Shi
  • Zezhen Ding
rdfs:label
  • CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients (en)
  • CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients (nl)
skos:prefLabel
  • CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients (en)
  • CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients (nl)
name
  • CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients (en)
  • CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients (nl)
title
title
  • CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients (en)
page(s)
page(s)
  • 5613-5622
instance of
instance of
main subject
main subject
Faceted Search & Find service v1.16.117 as of May 05 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of May 5 2024, on Linux (x86_64-centos_6-linux-gnu), Single-Server Edition (378 GB total memory, 195 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software