Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
asEquivalent
b3s
b3sifp
facets
ldp
oplweb
skos-trans
virtrdf-label
virtrdf-url
None
About:
Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
wikibase:Item
, within Data Space :
wikidata.demo.openlinksw.com
associated with source
document(s)
Type:
Item
New Facet based on Instances of this Class
scientific article published on 24 October 2019
Attributes
Values
rdf:type
Item
description
wetenschappelijk artikel
(nl)
article scientifique publié en 2019
(fr)
artículu científicu espublizáu n'ochobre de 2019
(ast)
im Oktober 2019 veröffentlichter wissenschaftlicher Artikel
(de)
наукова стаття, опублікована 24 жовтня 2019
(uk)
scientific article published on 24 October 2019
(en)
publication date
wds:Q91047627-966FB9E3-67C2-4930-8A8D-E0FBEAE74AA7
publication date
2019-10-24 00:00:00Z
(
xsd:dateTime
)
author name string
wds:Q91047627-3E343D8D-9D59-479B-A38F-F50D91D7419A
wds:Q91047627-474EA1C2-5A38-40FD-973D-9F9500651A98
wds:Q91047627-5C1D0E93-484F-4695-A8E5-B135E81E9C66
wds:Q91047627-63024CE2-C46C-46EC-8674-A628B68E00F3
wds:Q91047627-6FF9F04F-133D-4CFE-B4F3-427B36A52DCA
wds:Q91047627-7687E475-EA4D-400C-B5C6-EE610F2B8EA8
wds:Q91047627-7C951EA1-4893-430F-835E-43D0E3AD2BB5
wds:Q91047627-91C585CF-0445-493A-A81B-073185A15D7D
wds:Q91047627-A01C6DA0-9697-4B3F-B9FB-2E2554761177
author name string
Hui-Kuo Shu
Xue Dong
Tian Liu
Walter J Curran
Yang Lei
Zhen Tian
Xiaojun Jiang
Tonghe Wang
Yingzi Liu
rdfs:label
Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy
(en)
Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy
(nl)
skos:prefLabel
Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy
(en)
Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy
(nl)
name
Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy
(en)
Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy
(nl)
author
wds:Q91047627-BEAB5AAE-02A5-4A9A-ACDD-53434A5152DD
author
Xiaofeng Yang
title
wds:Q91047627-079B6699-E01A-492C-B80B-9548E523582E
title
Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy
(en)
page(s)
wds:Q91047627-F256AFBA-AF53-41ED-A9D1-E1E4F5132C76
page(s)
043504
instance of
wds:Q91047627-D681F4E3-73EE-4BAB-8358-A4ACB1764942
instance of
scholarly article
main subject
wds:Q91047627-FC4016EB-B760-4261-9923-6EAE0F14BAAF
main subject
deep learning
PubMed ID
wds:Q91047627-3F924872-C37B-4BFA-A13E-814714AB0A13
PubMed ID
http://rdf.ncbi.nlm.nih.gov/pubchem/reference/31673567
PubMed ID
31673567
published in
wds:Q91047627-FC51A852-72C5-440F-91CF-067681CC6F0A
published in
Journal of Medical Imaging
issue
wds:Q91047627-E6A90A16-AD99-404E-A0B9-65E304C9943C
volume
wds:Q91047627-14821773-B1F1-40E5-B92D-4113EB4061A2
issue
4
volume
6
DOI
wds:Q91047627-09C14E6B-98E9-46C8-87A3-189FC39B0E06
DOI
http://dx.doi.org/10.1117/1.JMI.6.4.043504
DOI
10.1117/1.JMI.6.4.043504
describes a project that uses
wds:Q91047627-BFF5FCDF-30EE-4EDF-B198-9BFB83047928
describes a project that uses
scikit-image
PMCID
wds:Q91047627-D2EE16DC-5288-41C5-913B-13F75ED5DAAA
PMCID
6811730
is
about
of
https://www.wikidata.org/wiki/Special:EntityData/Q91047627
is
cites work
of
Deep learning in medical image registration: a review
CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy
is
cites work
of
wds:Q90690696-094F1AB1-475F-4F77-88F2-E8F7A074AD6E
wds:Q90105208-6ABA6D12-62BC-4828-B3F5-438B3BF31FC6
Faceted Search & Find service v1.16.117 as of May 05 2024
Alternative Linked Data Documents:
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3239 as of May 5 2024, on Linux (x86_64-centos_6-linux-gnu), Single-Server Edition (378 GB total memory, 190 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software