Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
asEquivalent
b3s
b3sifp
facets
ldp
oplweb
skos-trans
virtrdf-label
virtrdf-url
None
About:
Letter to the editor: a response to Ming's study on machine learning techniques for personalized breast cancer risk prediction
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
wikibase:Item
, within Data Space :
wikidata.demo.openlinksw.com
associated with source
document(s)
Type:
Item
New Facet based on Instances of this Class
scientific article published on 10 February 2020
Attributes
Values
rdf:type
Item
description
wetenschappelijk artikel
(nl)
article scientifique publié en 2020
(fr)
artículu científicu espublizáu en febreru de 2020
(ast)
scientific article published on 10 February 2020
(en)
2020 թվականի փետրվարի 10-ին հրատարակված գիտական հոդված
(hy)
наукова стаття, опублікована 10 лютого 2020
(uk)
publication date
wds:Q89635615-21D66B38-4FA9-4462-A8CA-EBFFF172EDEC
publication date
2020-02-10 00:00:00Z
(
xsd:dateTime
)
cites work
wds:Q89635615-630FCE11-D19F-4B90-B833-3438831B2E3D
wds:Q89635615-7E03C440-FD0F-41F0-A84A-692D3F03C166
wds:Q89635615-D3073FB1-5EB2-401D-A8A0-13D4EA82BE60
wds:Q89635615-E2E63039-3067-49E7-8A36-16868416A0DF
wds:Q89635615-F87B8652-B4DD-4D73-B61B-497ED181B18B
cites work
Prediction models need appropriate internal, internal-external, and external validation
External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination
A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models
A simple, step-by-step guide to interpreting decision curve analysis
Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models.
author name string
wds:Q89635615-4AF02E31-130C-43B6-B063-A7B6ADF14924
wds:Q89635615-DEE88647-AA16-43DE-BE7A-7E6C3AA88673
author name string
Ewout W Steyerberg
Luigi Mariani
rdfs:label
Letter to the editor: a response to Ming's study on machine learning techniques for personalized breast cancer risk prediction
(en)
Letter to the editor: a response to Ming's study on machine learning techniques for personalized breast cancer risk prediction
(nl)
skos:prefLabel
Letter to the editor: a response to Ming's study on machine learning techniques for personalized breast cancer risk prediction
(en)
Letter to the editor: a response to Ming's study on machine learning techniques for personalized breast cancer risk prediction
(nl)
name
Letter to the editor: a response to Ming's study on machine learning techniques for personalized breast cancer risk prediction
(en)
Letter to the editor: a response to Ming's study on machine learning techniques for personalized breast cancer risk prediction
(nl)
author
wds:Q89635615-57A2CF4C-7ADA-4BA7-86C5-603E28B6C9C8
wds:Q89635615-A77CD004-3BDB-4727-AEAC-9886767E279D
wds:Q89635615-B1801659-29C0-474B-9DF0-5C1C91FD36CE
author
Douglas F. Easton
Antonis C Antoniou
Daniele Giardiello
title
wds:Q89635615-F9E99AED-B3C0-43E3-B9CB-3DDE1E51195E
title
Letter to the editor: a response to Ming's study on machine learning techniques for personalized breast cancer risk prediction
(en)
page(s)
wds:Q89635615-07D0FA48-F4C1-4D1C-9B04-1F40F993EDEE
page(s)
17
instance of
wds:Q89635615-AC742A97-5CBF-42EA-AB75-29745F376E76
instance of
scholarly article
main subject
wds:Q89635615-FA97B1F9-FF42-4FB9-A5B5-D25F15362286
main subject
machine learning
PubMed ID
wds:Q89635615-1DE6E92C-FF6F-4542-AD2A-8F91C689778B
PubMed ID
http://rdf.ncbi.nlm.nih.gov/pubchem/reference/32041655
PubMed ID
32041655
published in
wds:Q89635615-2BFDAEDF-9B55-4C35-B026-6F007363F568
published in
Breast Cancer Research
issue
wds:Q89635615-D52DD5B1-DCC2-472E-94C3-11E6ECF5F8A2
volume
wds:Q89635615-68566ADF-5BF6-4953-9041-683C1CAC701B
issue
1
volume
22
DOI
wds:Q89635615-7BF8F8FE-4F5C-43CA-B032-E886AFD18D34
DOI
http://dx.doi.org/10.1186/S13058-020-1255-4
DOI
10.1186/S13058-020-1255-4
PMCID
wds:Q89635615-F9594903-3FC9-427D-9768-B46C122AEAEA
PMCID
7011440
is
about
of
https://www.wikidata.org/wiki/Special:EntityData/Q89635615
is
cites work
of
Letter to the editor: Response to Giardiello D, Antoniou AC, Mariani L, Easton DF, Steyerberg EW
is
cites work
of
wds:Q91813371-89ECF5A3-0C5E-47AF-BE01-5A60E38E2DC3
Faceted Search & Find service v1.16.117 as of May 05 2024
Alternative Linked Data Documents:
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3239 as of May 5 2024, on Linux (x86_64-centos_6-linux-gnu), Single-Server Edition (378 GB total memory, 180 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software