About: Evaluation of deep learning methods for parotid gland segmentation from CT images     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : wikibase:Item, within Data Space : wikidata.demo.openlinksw.com associated with source document(s)

scientific article published on 01 October 2018

AttributesValues
rdf:type
description
  • wetenschappelijk artikel (nl)
  • наукова стаття, опублікована в січні 2019 (uk)
  • im Oktober 2018 veröffentlichter wissenschaftlicher Artikel (de)
  • scientific article published on 01 October 2018 (en)
  • artículu científicu espublizáu n'ochobre de 2018 (ast)
publication date
publication date
language of work or name
language of work or name
cites work
cites work
author name string
author name string
  • Jan Klein
  • Horst K Hahn
  • Volker Dicken
  • Tobias Gass
  • Benjamin Haas
  • Tomasz Morgas
  • Michael Schwier
  • Annika Hänsch
rdfs:label
  • Evaluation of deep learning methods for parotid gland segmentation from CT images (en)
  • Evaluation of deep learning methods for parotid gland segmentation from CT images (nl)
skos:prefLabel
  • Evaluation of deep learning methods for parotid gland segmentation from CT images (en)
  • Evaluation of deep learning methods for parotid gland segmentation from CT images (nl)
name
  • Evaluation of deep learning methods for parotid gland segmentation from CT images (en)
  • Evaluation of deep learning methods for parotid gland segmentation from CT images (nl)
author
author
title
title
  • Evaluation of deep learning methods for parotid gland segmentation from CT images (en)
page(s)
page(s)
  • 011005
instance of
instance of
main subject
main subject
PubMed ID
PubMed ID
PubMed ID
  • 30276222
published in
published in
issue
volume
issue
  • 1
volume
  • 6
DOI
DOI
DOI
  • 10.1117/1.JMI.6.1.011005
PMCID
PMCID
  • 6165912
is about of
Faceted Search & Find service v1.16.117 as of May 05 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of May 5 2024, on Linux (x86_64-centos_6-linux-gnu), Single-Server Edition (378 GB total memory, 190 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software